

Electric Industry Data Exchange (EIDE)

Communications Protocol Document 1.0.5

Proposed by: WECC DEWG

November 22, 2006

Table of Contents

1.0 Introduction .. 3

1.1 Purpose ... 3
1.2 Scope .. 3
1.3 Overview .. 4
1.4 How SMXP Works... 4

2.0 Schema Description.. 5
2.1 EIDE Schema Abstract Objects.. 5
2.2 EIDE Schema SMXP Functions... 6
2.3 EIDE Example Schema for PutSchedule Object .. 8

3.0 Data Exchange Message Mapping.. 11
3.1 Single-Request-Response State Diagram ... 12
3.2 Asynchronous Communications Example of PutSchedule... 13
3.3 Synchronous Communications Example of PutSchedule... 13
3.4 Asynchronous Communications Example of GetSchedule .. 14
3.5 Synchronous Communications Description of GetSchedule .. 14

4.0 EIDE SMXP Data Communications Protocol Conventions... 14
4.1 SysGenID Conventions .. 14
4.2 ResponseSysGenID Conventions ... 16
4.3 Identifying Data Conventions... 16
4.4 Acknowledgement Conventions... 16
4.5 Get Methods Conventions .. 17
4.6 Put Meter Conventions ... 17
4.7 Put Schedule Conventions .. 17
4.8 StartTime and StopTime Conventions.. 17
4.9 Data Compression Conventions ... 17

5.0 Security, Identity, and Authenticity.. 18
6.0 Design Considerations.. 19
7.0 References .. 20
8.0 Sample Documents... 20
Appendix 1 — Implementation Guidelines and Practices.. 21

 Page 2 of 24 11/22/2006

1.0 Introduction

1.1 Purpose

In 1998, the WECC DEWG members and various participants from the industry and
vendor community worked together to begin the migration from the existing, aging,
WECC X.25 communications network. The move was necessary due to the change in
technology during the past decade, which marked the end of the production of the X.25
routing equipment used in the network. The WECC X.25 communications network is a
synchronous 9.6 to 56 kbps modem and Motorola packet switch based private
communications network. This network was established prior to the existence of the
Internet that currently operates at speeds of 2 to 100 mbps. The packet switches have
been out of production for several years and replacement parts are no longer available.
The first phase of the migration was to move to Inter Control Center Communications
Protocol (ICCP) to replace the “real-time” data exchange. The ICCP system was
subsequently instigated and most entities that wished to exchange data at a high
frequency installed ICCP communications. ICCP has subsequently been used to transmit
EHV Data Pool data to the WECC, Security Coordinator data, Network Applications
data, Reserve Sharing data, unit control data, and Operating Reserves Self Supply data.
The migration from the WECC X.25 Process ID 8 (real time) data to ICCP block 1 and 2
(real time) data has been completed.

As of October 2001, replacement of the WECC X.25 Process IDs (PIDs) 1, 2,3,4,5,9,10,
and 14 (as well as other PIDs) that were being used for periodic data exchange (meters,
schedules, etc) had not yet been initiated. The Bonneville Power Administration,
alarmed at the lack of spare parts for their existing systems, requested a meeting of the
NWPP IDE-TC to discuss a migration plan. While block 8 of the ICCP communications
system was designed to handle these types of objects, most entities were left with the
responsibility of implementing block 8 on their own. The NWPP IDE-TC did not lead an
effort to migrate to block 8. Now, new technology is available that has many advantages
over block 8.

1.2 Scope

The NWPP IDE-TC designed the EIDE Communications Protocol in order to replace the
remainder of the WECC X.25 communications protocol plus provide other functionality
that seemed useful for BAs, PSEs, RAs, etc. Data with a periodicity greater than or equal
to one minute may be exchanged with this protocol. Examples are schedule data, meter
data, and other periodic power system data such as lake elevations, river flows, generator
discharge, etc. The protocol also supports the exchange of messages and generic string
data. EIDE can be easily extended privately for specific requirements between individual
parties and the WECC DEWG may extend EIDE as requested by members.

 Page 3 of 24 11/22/2006

1.3 Overview

EIDE is currently being used to exchange meter, power system, and schedule data
between five entities with several more entities planning on implementation within the
next few years. EIDE is an XML based communications protocol designed to conform to
SMXP. SMXP (Simple Message eXchange Protocol) is a subset of SOAP (Simple
Object Access Protocol) as defined by the W3C (World Wide Web Consortium). SMXP
supports single-request-response message mapping using HTTP binding. The
recommended implementation is to use TLS (Transport Layer Security) 128 (https) with
client certificates and the Request-Response message mapping described in this
document, however it is also possible to exchange the EIDE XML documents using other
exchange mechanisms such as FTP, e-mail, etc. and emulate the synchronous single-
request-response mapping using asynchronous response messages.

The SMXP functions include PUT and GET functions (a.k.a. Methods) for most data
types, along with a server status function. The server status function can be used as a
heartbeat or to request the functions that a particular server supports.

The EIDE schema supports a response code that can be used to provide error response
information. Additionally the fault codes defined in the SMXP Style Guide (1.0) in
section 3.4 may be used to provide the defined error responses to the host SMXP
processor.

WECC DEWG recommends the use of SMXP as defined in the SMXP Style Guide8
however the Message Exchange Model described in section 2 of the guide is extended to
include other mechanisms of exchange as agreed to by the parties exchanging data. The
EIDE Schema has been designed with this flexibility in mind. Any message exchange
method that allows the exchange of ASCII data files is therefore suitable.

The message framework, encoding, XML conventions, etc. that apply to the EIDE
communications protocol are described in the SMXP Style Guide version 1.0. All
Date/Time data will be required to use the extended format in UTC (“2002-05-
30T13:20:00.000Z”).

1.4 How SMXP Works

All EIDE messages are sent using the SMXP (Simple Method Exchange Protocol). This
protocol is based upon a remote procedure call (RPC) paradigm. This means that instead
of sending messages explicitly, you invoke procedures on remote machines, and pass any
needed data as input parameters to the function. When the function is complete, it returns
the result of its processing. The SMXP protocol is layered on top of the HTTP protocol,
which handles all of the underlying communication. SMXP defines the set of rules for
encoding remote procedure call parameters into HTTP POST messages, as well as the set
of rules for how such messages should be processed by a remote server.
The steps of executing an SMXP method are as follows:

 Page 4 of 24 11/22/2006

 A request is generated, containing the method name and any needed parameters.
 The request is sent via HTTP to a listener on the remote machine.
 The remote machine receives the SMXP request, examines it to determine which

method or procedures should be executed, and validates the SMXP body (the
XML payload) against a predefined schema (the EIDE schema in this case) to
determine if it is SMXP and XML compliant.

 The remote machine then executes the appropriate method and packages the result
into an SMXP compliant XML document.

Each SMXP method call has two important parts – the request and the response. Most of
the methods used are synchronous methods, meaning that once the calling machine
makes a request, it waits for a response containing the results of its request before
continuing.

In numerous cases, asynchronous methods are used. In an asynchronous method, a
request is generated and sent to a remote machine. The remote machine places the
request into a queue, and sends a response to the calling machine that indicates the
request has been received and queued for processing. The connection is then terminated.
At some point in the future, the remote server runs the requested method and sends the
result to the calling machine via a separate SMXP message (requiring a second
request/response pair).

SMXP-compliant systems are only required to support the processing of one method call
per connection session. Multiple calls per session are not supported.

SMXP is quickly evolving to be an electric industry standard for exchanging information
over the Internet. It is, in fact, the model that E-tag V1.7 is built upon.

2.0 Schema Description

2.1 EIDE Schema Abstract Objects

The EIDE data exchange schema set is composed of abstract object types, each of which
may be composed of any combination of elements, attributes, and complex types. While
the objects were created specifically for exchanging certain types of data, this is not
meant to be an imposed limit.

The EIDE data exchange schema abstract object types are:

ScheduleType For exchanging schedule data
MeterType For meter data
PowerSystemDataType For power system data (such as lake levels,

temperatures, etc.)
MessageType For sending messages
StringType For sending generic ASCII data

 Page 5 of 24 11/22/2006

PIDType For sending old X.25 PID 1,2,3,4,5 and 14 data

These objects are then embedded within SMXP function definitions.

The schema also defines several other types and referenced elements that are used to
abstract objects used within the data exchange elements.

2.2 EIDE Schema SMXP Functions

The protocol allows for both synchronous and asynchronous message responses. Each
type therefore has two sets of single-request-response messages associated with both the
Put and Get functions. For example, if an entity initiates a PutSchedule to a partner
entity, the partner would respond with a PutScheduleResponse. If the sending entity
requests an acknowledgement, then the partner entity would initiate a PutScheduleAck
indicating whether the schedules had been processed correctly or not and would expect a
PutScheduleAckResponse in response to the PutScheduleAck. Documents are sent to the
remote partner using the http(s) POST method.

The remote procedure call functions are listed below by object type:

 ScheduleType:
 PutSchedule
 PutScheduleResponse
 PutScheduleAck

PutScheduleAckResponse

GetSchedule
GetScheduleResponse
GetScheduleAsyncReply
GetScheduleAsyncReplyResponse

 MeterType:
 PutMeter
 PutMeterResponse
 PutMeterAck
 PutMeterAckResponse

 GetMeter
 GetMeterResponse
 GetMeterAsyncReply
 GetMeterAsyncReplyResponse

 PowerSystemDataType:
 PutPSD
 PutPSDResponse

 Page 6 of 24 11/22/2006

 PutPSDAck
 PutPSDAckResponse

 GetPSD
 GetPSDResponse
 GetPSDAsyncReply
 GetPSDAsyncReplyResponse

 MessageType:
 PutMessage
 PutMessageResponse
 PutMessageAck
 PutMessageAckResponse

 There is no “get” function for messages.

 StringType:
 PutString
 PutStringResponse
 PutStringAck
 PutStringAckResponse

 GetString
 GetStringResponse
 GetStringAsyncReply
 GetStringAsyncReplyResponse

 PIDType:
 PutPID
 PutPIDResponse
 PutPIDAck
 PutPIDAckResponse

 GetPID
 GetPIDResponse
 GetPIDAsyncReply
 GetPIDAsyncReplyResponse

This list is representative of the methods implemented by EIDE however the schema
itself is the definition of correctly formatted EIDE XML. The schema contains additional
objects that are not listed above and will change from time to time as approved by the
WECC DEWG.

 Page 7 of 24 11/22/2006

2.3 EIDE Example Schema for PutSchedule Object

The schema is shown below in text format. The easiest way to view and understand the
schema is graphically as it shows the hierarchical layout of the PutSchedule object. The
fully expanded graphic does not fit on one screen; therefore, a partial graphic is shown in
section 2.3.5. The schema is best viewed using a schema-viewing tool such as XML
Spy9.

2.3.1 Put Schedule Element

 <xs:element name="PutSchedule">
 <xs:annotation>
 <xs:documentation>Send schedule(s)</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MessageInfo" type="MessageInfoType"/>
 <xs:element name="Schedules" type="ScheduleType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

2.3.2 MessageInfoType
<xs:complexType name="MessageInfoType">
 <xs:annotation>
 <xs:documentation>Message Header</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="SysGenID" type="xs:int">
 <xs:annotation>
 <xs:documentation>Unique, increasing integer number or, in sync response, ID in
request</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="TimeStamp" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>Date/Time in UTC that this document was created</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Sender" type="xs:string">
 <xs:annotation>
 <xs:documentation>NERC ID of the Sending Party</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Receiver" type="xs:string">
 <xs:annotation>
 <xs:documentation>NERC ID of the Receiving Party</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="EntityCode" type="xs:string">
 <xs:annotation>
 <xs:documentation>NERC ID of the Party on whose behalf the Sender is
acting</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ProcessID" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Optional field cooresponding to the WECC PID</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="DataSet" type="xs:int" minOccurs="0">

 Page 8 of 24 11/22/2006

 <xs:annotation>
 <xs:documentation>Optional field cooresponding to an integer identifying the data
set</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ListID" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Optional field cooresponding to an integer identifying a particular
list</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ResponseSysGenID" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>SysGenID that this message is responding to</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Comment" type="xs:string" minOccurs="0"/>
 <xs:element name="RequireAck" type="xs:boolean" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Set to YES if response "ProcessedOK" is required. Ignored if this is a
response.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="UserID" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Name or ID of the sender</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

2.3.3 ScheduleType

<xs:complexType name="ScheduleType">
 <xs:annotation>
 <xs:documentation>Schedules etc.</xs:documentation>
 </xs:annotation>
 <xs:sequence maxOccurs="10000">
 <xs:element name="Schedule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ScheduleDescription" type="ScheduleDescriptionType"/>
 <xs:element name="Quantities">
 <xs:complexType>
 <xs:sequence maxOccurs="44700">
 <xs:annotation>
 <xs:documentation>745*60</xs:documentation>
 </xs:annotation>
 <xs:element name="Quantity">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Value" type="xs:int"/>
 <xs:element name="StartTime" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>UTC, start of
period</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="EndTime" type="xs:dateTime"/>
 <xs:element name="Price" type="xs:float" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 Page 9 of 24 11/22/2006

 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ValueUnits">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="MW"/>
 <xs:enumeration value="MWh"/>
 <xs:enumeration value="kWh"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="PriceUnits" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="USD"/>
 <xs:enumeration value="CDN"/>
 <xs:enumeration value="Pesos"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

2.3.4 DealInfoType

 <xs:complexType name="DealInfoType">
 <xs:annotation>
 <xs:documentation>Schedule Information, at least one of these fields must be
resent</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="GCA" type="xs:string" minOccurs="0"/>
 <xs:element name="LCA" type="xs:string" minOccurs="0"/>
 <xs:element name="SendingPSE" type="xs:string" minOccurs="0"/>
 <xs:element name="ReceivingPSE" type="xs:string" minOccurs="0"/>
 <xs:element name="Adjacent" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Physical or virtual Adjacent Control Area or
Equipment</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Contract" type="xs:string" minOccurs="0"/>
 <xs:element name="DealNumber" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 Page 10 of 24 11/22/2006

2.3.5 Partial Graphic of PutSchedule Object in XML Spy

3.0 Data Exchange Message Mapping

The HTTP binding is described in the discussion below using the single-request-response
message mapping described in the SOAP W3C documentation2,3,4. Other transport
methods are not discussed, however the same general principles apply. In the SMXP
HTTP binding message mapping, the SMXP methods defined by the EIDE schema are
passed as the body to an SMXP HTML document.

 Page 11 of 24 11/22/2006

3.1 Single-Request-Response State Diagram

(From SOAP Version 1.2 Part 2: Adjuncts section 7.1.3)

The single-request-response message mapping state diagram is shown above. The
"Requesting" SOAP node issues an HTTPGet using POST (basically what a web browser
does when you enter a URL with parameters and hit return) and the "Receiving" SOAP
node replies to the HTTPGet with an HTTPResponse. The HTTPGet function generally
waits until the receiving node responds and returns the response object as part of the
return value of the get function. The HTTPGet function will take at least the target URL
and SMXP method (XML document) as an argument. The receiving node should reply
with an SMXP method.

See the SOAP Adjuncts document4 section 7.1.3 for the full state transition tables of
sending and receiving node.

 Page 12 of 24 11/22/2006

3.2 Asynchronous Communications Example of PutSchedule

The sending node puts schedules to the receiving node and RequireAck field is set to
"YES". This exchange is accomplished using the PutSchedule method, which is
responded to with the PutScheduleResponse method.

Sending Node Receiving Node

PutSchedule

PutScheduleResponse

PutScheduleAck

PutScheduleAckResponse

The receiving node responds initially with the ResponseCode set to "QueuedOK" in the
PutScheduleResponse XML document. The receiving node then processes the schedules,
most likely saving them to a database or inserting them into a scheduling system, and
then issues an HTTPGet function passing a PutScheduleAck in the body of the SMXP
XML document. The response SysGenID field is populated with the SysGenID of the
original PutSchedule and the ResponseCode is set to "ProcessedOK". The receiving
party responds synchronously with a PutScheduleAckResponse.

3.3 Synchronous Communications Example of PutSchedule

The sending node puts schedules to the receiving node and the RequireAck field is set to
"YES". In this example, the receiver is capable of immediately fully processing the
schedules and responds with "ProcessedOK".

Sending Node Receiving Node

PutSchedule

PutScheduleResponse

Note, this example would look the same if the sender either set the RequireAck field to
"FALSE" or didn't set the RequireAck field. In that case, the sender would only care
about "ReceivedOK" being set in the ResponseCode.

 Page 13 of 24 11/22/2006

3.4 Asynchronous Communications Example of GetSchedule

The sending node uses HTTPGet with a GetSchedule SMXP method. By convention, the
message header contains a DataSet, ListID or neither set. If neither are set, then all
schedules that can be requested by the requestor are sent in the response. If either is set,
then the schedules corresponding to the ListID or DataSet are returned. The first
ScheduleDescription field populated with the StartTime and EndTime so that the receiver
can determine the date range the requested is requesting. The GetScheduleResponse is
then sent back by the receiving node with a "ReceivedOK" response.

Sending Node Receiving Node

GetSchedule

GetScheduleResponse

GetScheduleAsyncReply

GetScheduleAsyncReplyResponse

The receiving node then gathers up the requested schedules and becomes the sending
node in the exchange. The receiving node issues an HTTPGet with a populated
GetScheduleAsyncReply XML element in the body element of an SMXP XML
document. The receiver replies with a GetScheduleAsyncReplyResponse.

3.5 Synchronous Communications Description of GetSchedule

The sending node uses HTTPGet with a GetSchedule SMXP method. The
GetScheduleResponse is then sent back by the receiving node with all schedule data
requested by the requesting party populated.

4.0 EIDE SMXP Data Communications Protocol Conventions

Certain conventions must be followed in order for the sending and receiving nodes to be
able to communicate. This section describes those conventions.

4.1 SysGenID Conventions

The SysGenID is defined as an integer that limits the minimum and maximum range from
-2147483648 to 2147483647. Each MessageInfo header contains a SysGenID and by
convention, this SysGenID is required to be unique by entity and increasing (not
necessarily contiguous). The SysGenID is assigned to every EIDE XML document and

 Page 14 of 24 11/22/2006

can be used to uniquely identify the document when used in combination with the
Sender. Note that while it will probably take quite a while to reach the maximum int
size, that TimeStamp must be used to uniquely identify the documents unless they are
aged into a history table. The complete unique identification of a document will then
consist of Sender, SysGenID, and TimeStamp. When the SysGenID reaches the
2147483647 maximum it should cycle to the original starting point, which could be either
negative or positive. The DEWG recommends starting at zero and not using the negative
range except for special purposes such as internal message exchange or testing.

In a Request/Response message pair, the requesting node will generate a unique
SysGenID to populate this field and the responding node will use the requestor’s
SysGenID to populate the ResponseSysGenID field in the response. The
ResponseSysGenID field will also be set in an Ack or AsynchReply message.

 Page 15 of 24 11/22/2006

4.2 ResponseSysGenID Conventions

This optional field is required in all Ack and AsyncResponse messages to allow the
receiving node in the exchange to uniquely identify the message to which this response
corresponds. It is required to be the SysGenID of the message that the AsyncResponse is
in response to. It is not required in the response method to an HTTPGet, therefore it is
not a required field in any header. It is up to the party receiving the Ack or
AsyncResponse to validate this field, match it with the expected response, and enforce
the requirement for receipt since it cannot be required in the XML.

4.3 Identifying Data Conventions

In order for the receiving party to identify the data that is being sent to it or requested
from it, the sending party must fill in the DataSet, ListID, AccountCode, or DealInfo. All
of these fields are optional in the schemas. At least one must be populated in order for
the parties to identify the data. Most parties will use look up tables to map the DataSet,
ListID, or AccountCode to local definitions of the data. It may be possible for parties to
directly map the data if the DealInfo element is populated.

If DataSet or ListID are used as the sole identifier for the data, then the data must be
presented in the specific order agreed to by the parties so that sequences occurring
multiple times can be mapped to specific local definitions. WECC account code
mapping is generally preferable.

4.4 Acknowledgement Conventions

Every HTTPGet must receive some kind of ResponseCode in the HTTPReply in order to
be considered successful. The DEWG recommends that the sending party, at a minimum,
look for the “ReceivedOK” response and take corrective action if this response is not
received. Complete definition of corrective action is outside the scope of this document
however, examples are; (1) waiting for some period, then attempting to retransmit the
data; and/or (2) notifying the local staff that there has been a transmission problem.

If the sender requests an acknowledgement by setting the RequireAck field to “YES”,
then the receiver should reply with “ProcessedOK” after the EIDE XML document has
been processed successfully by the receiving node. Note that setting RequireAck to
“YES” in any response SMXP method is not defined as part of the EIDE protocol and the
receiver may choose to ignore the RequireAck field in all response methods.

 Page 16 of 24 11/22/2006

4.5 Get Methods Conventions

In order to identify the data that is being requested, and the time period for which it is
being requested, certain conventions need to be followed to implement the “Get”
methods. The EIDE protocol was designed in order to provide the maximum amount of
flexibility for parties to exchange data. This actually creates some problems in one sense
because the burden falls to the implementer to write appropriate algorithms to
accommodate this flexibility. For get functions, the protocol was designed to allow the
requestor to ask for all applicable data, data identified by a list, data identified by a
dataset, data identified by account code, or data identified by DealInfo information.
Implementation of all these options is not necessary between parties that agree to specific
conventions however. The NWPP parties have agreed to populate the ListID to specify a
particular list, the DataSet to identify a particular DataSet, or leave both out of the
document to mean “all applicable data”. The NWPP parties also agreed to populate the
first “description” node (schedule description, etc) with the start and end dates of the data
request.

4.6 Put Meter Conventions

Parties in the NW have implemented the PutMeter method to transmit data for the
previous hour ending with the CumTotal field containing the total for data for that
account between 01:00 and the last hour ending. For example, if the PutMeter is sent at
08:01 then the quantity field contains data for HE 8 and the CumTotal field contains the
sum of quantities for HE 1 to HE 8. Generally, the Put Meter method is used to send only
one hour of data at a time but may be used to send multiple hours of data. PutMeter
methods for previous days will usually contain 24 hours of data.

4.7 Put Schedule Conventions

Parties in the NW have implemented the PutSchedule method to transmit hourly data for
the full day, HE 1 to HE 24.

4.8 StartTime and StopTime Conventions

Start Time is the hour beginning time and stop time is the hour ending time. A full days
schedule for today, in local time, would have a start time of today 00:00 and an end time
of tomorrow 00:00. Similarly the start and stop time for hour ending 08:00 data would
be 07:00 and 08:00 respectively.

4.9 Data Compression Conventions

 Page 17 of 24 11/22/2006

When multiple quantities are sent for a single account, they can be compressed if the
quantities are the same. Such compressed profiles reduce message transfer sizes. For
example, a schedule that contains 0s for HE 1 to 5, 10s for HE 6 to 8, 20s for HE 9 to 24
would be sent with 3 quantity blocks. One with a start time of 00:00 and end time of
05:00 with quantity 0, one with start time of 05:00 and end time of 08:00 with quantity
10, and one with start time of 08:00 and end time of 00:00 (the next day) with quantity
20.

 5.0 Security, Identity, and Authenticity

Security (no one else can read the data except for the intended recipient), identity (the
parties involved in the communication are who they claim to be), and authenticity (the
data received is identical to the data sent) all can be achieved using TLS and requiring
client certificates. The “NWPP DETC Periodic Data Exchange” abstract10 addresses
security issues and can be referenced for further information. The DEWG recommends
TLS 128 and requires the use of NAESB PKI compliant certificates. NAESB PKI
compliant client certificates are included in secure TLS POST calls to Internet servers
implementing TLS using NAESB PKI compliant certificates. The DEWG recommends
mapping the client certificates using common name, etc. to eliminate the maintenance
burden of exchanging specific certificates. The DEWG also recommends building the
EIDE software so that it automatically switches between secure and plain text (https/http)
transfers depending on the URL of the target.

TLS encryption requires simply that the software initiating the connection use an TLS
call. Web clients (like Internet Explorer) use TLS whenever they see “https” in the URL.
Internally, IE is using a different method to invoke the session. The TLS method that
gets invoked establishes communication with the remote server first and a session key is
exchanged which allows the client to encrypt data and the target server to decrypt the
data. In a phased approach, server side TLS can be completed first where no client
certificate is required. This accomplishes the goals of 1) ensuring that no one can read
the data except for the intended parties and 2) ensuring the data has not been manipulated
in transit. This also ensures server side authentication.

TLS authentication on the client side is accomplished by the attachment of a client
certificate to the message. Passing a parameter to the session establishment call
containing the fully qualified file name and the certificate password does this. There are
several different methods that can be used by the web server to authenticate the client
cert, including matching the cert. The recommended method is to map based on common
name and certificate level.

NAESB PKI standards require the use of certificates that meet specific criteria contained
in the standard. Generally, OATI certificates, CAISO certificates, and Verisign level 3
certificates meet the certificate producer standards. The standards also require the
certificate holders to adhere to specific requirements. The basic intent of these standards

 Page 18 of 24 11/22/2006

is that they are kept secure and cancelled as soon as possible if compromised. This
includes employee termination and security breach events.

The use of CAISO or OATI certificates will require special installation on the web server
that needs to accept or use those certificates. Trusted Root Certification Authorities and
Intermediate Certification Authorities need to be updated to include these cert chains.
There are various methods to accomplish this based on the web server that is being used.

The client certificate is generally installed on a web browser (client) and then exported to
a file. When creating the client cert file, include the private key, export everything in the
path, and remember the password, as this will be used in the method call used to establish
the session. Ensure that the file is installed on the server issuing the method call and has
permissions that allow it to be accessed by the software using the method.

6.0 Design Considerations

The authors have found that the interfaces between the EIDE communications system and
the back office (EMS system, scheduling system, etc) systems should be designed with
the a few key ideas in mind.

• Create a data buffer mechanism to handle the case where data has been
received by the EIDE interface but the back office system is unavailable. This
provides for a graceful recovery in the case where the system is taken offline
for a short time or the network connection is down.

• Assume that your outbound network connection may hang if there is a

problem at a receiving parties site and build in a timeout routine of some sort
so that you application will continue to function. The timeout period should be
60 seconds.

• Do not send out your Put methods if your back office systems are down and

unable to provide the data. Consider generating an error message that is
displayed to the back end system user so that they may take appropriate
action.

• Design the system to update data or provide data only within specific

timelines as specified by back end system users or business rules.

• To facilitate debugging efforts, the outgoing XML messages should be
formatted into a form that is easily readable by the receiving parties. The
messages should not be chunked into long lines of information but should
instead be “pretty”. See Section 2.3 above for examples of what the messages
should look like at the receiving end(s).

• “Null” responses and/or “html” responses should be considered to be failures.

Only valid XML traffic should be considered as a valid response.

 Page 19 of 24 11/22/2006

7.0 References

1 W3C Document Home Page http://www.w3.org/TR/
2 SOAP Primer http://www.w3.org/TR/soap12-part0/
3 SOAP Messaging Framework http://www.w3.org/TR/soap12-part1/
4 SOAP Adjuncts http://www.w3.org/TR/soap12-part2/
5 XML Primer http://www.w3.org/TR/xmlschema-0/
6 XML Structures http://www.w3.org/TR/xmlschema-1/
7 XML Data Types http://www.w3.org/TR/xmlschema-2/
8 SXMP http://server06.nerc.com/tag/E-tag/smxpv1-20010408.doc
9 XML Spy http://www.xmlspy.com/
10 NWPP IDE-TC Abstract DETC Periodic Data Exchange December, 2001

8.0 Sample Documents

Sample XML documents with header information and SOAP wrappers are provided
separately as text documents.

 Page 20 of 24 11/22/2006

http://www.w3.org/TR/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://server06.nerc.com/tag/E-tag/smxpv1-20010408.doc
http://www.xmlspy.com/

Appendix 1 — Implementation Guidelines and Practices

The document below has been developed after several years of EIDE data-link
experience and is included as an aid in implementing the EIDE protocol.

EIDE Implementation Guidelines and Practices

The Electric Industry Data Exchange (EIDE) protocol is the WECC standard data exchange protocol for
exchanging non-realtime periodic data such as meter data, schedule data, and other power system data. The
protocol standardizes the method by which all WECC members may exchange non-realtime data. EIDE
will be used by the WECC for the WECC Interchange Tool (WIT). Many Balancing Authorities in the
WECC will be implementing an EIDE-compliant data link to upload to and/or download from the WIT
both their scheduled and actual interchange values within the next year.

The EIDE protocol has been used to exchange meter, power system, and schedule data between several
entities in the Pacific Northwest for the past three years.

The XML schema is a powerful and flexible definition tool that allows solutions to be developed relatively
quickly. This flexibility has some ambiguities that can be (and are) applied in ways that are inconsistent. In
other words, just because the EIDE XML schema allows a particular message stream or structure, it is not
always supported by all entities implementing EIDE.

This document attempts point out some of the implementation issues that entities implementing EIDE have
encountered over the years so that others are aware of them. It also attempts to develop and define some
business guidelines and/or procedures that have worked well over the past three years. These business
guidelines are suggestions only and in no way should restrict anything that parties may agree upon. It is
hoped that lessons we’ve learned thus far, and discussed here, will help any new EIDE data link
installations.

Data Methods
EIDE supports numerous message exchange structures. These structures are officially called “Methods”
because they define the method or remote procedure that is to be implemented on the remote system to
handle that particular inbound message structure.

For the hourly exchange of metered and scheduled interchange information, there are four methods that
will be commonly utilized; the PutSchedule, PutMeter, GetSchedule, and GetMeter methods. One would
think that the PutSchedule method is only used for scheduled interchanges and that the PutMeter method is
only used for metered interchanges. However, that is not a requirement of the protocol:

• PutSchedule—The PutSchedule method may be used to exchange any hourly values, whether they are

schedules, actuals, nets, memo accounts, generation, loads, etc.

 Guideline 1—Allow the use of the PutSchedule method for any type of hourly
accounts. Do not restrict it to “schedules” only.

The EIDE XML schema does allow for any number of hours to be sent with the PutSchedule
method—even a single hour at a time. In other words, even though it is designed to handle
multiple hourly accounts for multiple hours (single hour to multiple days’ worth of data) it is
generally implemented so that a single day’s worth of hourly values is transmitted. Backend
systems are also most likely set up to only expect and handle whole days (24 hours) at a time.

 Page 21 of 24 11/22/2006

 Guideline 2—Send whole days at a time with the PutSchedule method.

 Guideline 3—Whole days should start and end on day boundaries—even on time
change days.

• PutMeter—The PutMeter method may be used to exchange any type of hourly values, whether

they are schedules, actuals, nets, memo accounts, generation, loads, etc.

 Guideline 4—Allow the use of the PutMeter method for any hourly accounts. Do not
restrict it to “meters” only.

Again, the EIDE XML schema does allow for any number of hours to be sent with the PutMeter
method—even a whole day at a time. Even though it could handle multiple hourly accounts for
multiple hours, it is generally used to transfer only a single hour at a time. Backend systems are
also most likely set up to only expect and handle a single hour at a time.

 Guideline 5—Send one hour at a time with the PutMeter method.

• GetSchedule—the GetSchedule method allows a user to query a remote system for data for
multiple accounts for multiple hours. The schema allows for any number of hours to be requested.
Since the data is to be returned in the equivalent of a PutSchedule method, only whole days should
be requested. It can also be used to request any type of hourly accounts.

 Guideline 6—Request whole days at a time with the GetSchedule method.

 Guideline 7—The GetSchedule method can query for any type of hourly accounts

(schedules, meters, generation, etc.)

• GetMeter—the GetMeter method allows a user to query a remote system for data for multiple

accounts for multiple hours. Generally only a single hour at a time is requested. However, it
certainly may be utilized to request a full day’s worth of data.

 Guideline 8—Generally, request a single hour at a time with the GetMeter method.

 Guideline 9—The GetMeter method can query for any type of hourly accounts

(schedules, meters, generation, etc.)

Data Messages
The EIDE XML schema allows for multiple hourly accounts to be sent within a single transfer message
stream. There is no reason they should to be transferred individually. Yet some companies have limited this
capability, for whatever reason, by setting restrictions such that there can only be one hourly account per
transfer message. This of course is inefficient and difficult to handle cleanly.

 Guideline 10—As many hourly accounts as possible should be transferred in a
single transfer message stream.

Schema Validation Issues
One of the great features of using XML is that the message stream may be validated at any time—at the
sending end and/or the receiving end—in order to check that it is “well-formed” and that all of its data
values are included and of the correct type. If the message fails to comply with all schema validation rules
and formats, the transfer is aborted and/or rejected.

 Page 22 of 24 11/22/2006

All EIDE traffic is most certainly validated on the receiving end of a transfer. However that does not seem
to be the case on the sending end of a transfer. There have been numerous occasions when traffic arrives
that is rejected because of a schema validation issue. (For example, optional fields are sent in the message
that has no associated data for the field, i.e., “null” data). These schema validation errors should be caught
before the message is ever sent out.

 Guideline 11—All outgoing EIDE traffic should be validated against the EIDE XML
schema before being transmitted.

Generally, EIDE traffic is sent from a remote server and so the rejection error messages returned by the
receiving end may never seen by the users themselves.

 Guideline 12—Alarms and/or logs should be set up to alert users or IT staff of any
validation or transfer problems.

Additionally, as EIDE traffic is received, a message acknowledgement is sent back to the sender that either
reports that the message was received successfully or was rejected for what ever reason. Depending on
implementation, users generally have no way of knowing or viewing this type of information.

 Guideline 13—Log viewing facilities should be made available to users to be view
traffic acknowledgements and link status reports. This would significantly assist
users and reduce downtime.

Schedule Description

Each EIDE PutSchedule method (as do others) has a complex data element called a “Schedule” which is
used to define the parameters of a “schedule”. This element contains:

• A reference number (account code, Tag ID, etc.)
• The StartTime and EndTime of the schedule;

o Note: these are required fields.
o Schedule should start and stop on whole day boundaries.

• The Quantity data element (aka, profile) of the schedule.
o A Value (i.e., the MWH flowing for this period)
o The StartTime and EndTime for the given Value.

There have many instances when the schedule’s profile is inconsistent with the schedule’s defined start and
end times. For example,

• A profile actually falls outside the timeframe defined by the StartTime and EndTime of the
Schedule.

• The first profile does not start on the StartTime of the Schedule.
• The last profile does not end on the EndTime of the Schedule.

None of these problems are trapped out with schema validation. But these inconsistencies cause all sorts of
ambiguities and misinterpretations of the data such that wrong values end up in wrong hours causing all
sorts of problems. Hence:

 Guideline 15—The StartTime of the first defined profile element (Quantity) and the
EndTime of the last defined profile element should match the StartTime and
EndTime of the Schedule.

 Guideline 16—All hours between the StartTime and the EndTime of the Schedule

should be included and defined by the appropriate profile elements.

 Page 23 of 24 11/22/2006

 Guideline 17 – Use compression whenever possible. This is where StartTime and
EndTime will define a range using the same values for each Quantity.

Other Guidelines

The SOAP Action field has many possible formats. For the EIDE protocol, use the “:” notation (example:
EIDE:PutSchedule). This is not the Microsoft default and so may require method modification.

 Guideline 18 – Use the “:” notation for Soap Action. “EIDE:<MethodName>”.
Example: EIDE:PutSchedule.

UTC Time may be represented either in local time with an offset or in Zulu time. For the EIDE protocol,
use the Zulu representation with Time ending in “Z”. Example: <TimeStamp>2006-10-
31T23:17:31Z</TimeStamp>.

 Guideline 19 – Use the UTC Zulu time representation.

Conclusion
The guidelines and rules discussed above are not specifically directed at the WIT implementation
requirements. In fact, WIT implementers might have something else entirely in mind. However, as entities
implement EIDE for their WIT requirements, they will also realize that EIDE is valuable tool for hourly
data transfers between ALL entities—Balancing Authority neighbors, generation partners, reliability
centers, etc. It only makes sense that all EIDE transfers are as consistent as possible, regardless of the
application. By being aware of the issues we have experienced in the past and adhering to these guidelines,
it may help make all implementations go more smoothly and trouble free. Again, these are only guidelines,
not requirements.

 Page 24 of 24 11/22/2006

	1.0 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Overview
	1.4 How SMXP Works

	2.0 Schema Description
	2.1 EIDE Schema Abstract Objects
	2.2 EIDE Schema SMXP Functions
	2.3 EIDE Example Schema for PutSchedule Object

	3.0 Data Exchange Message Mapping
	 3.1 Single-Request-Response State Diagram
	3.2 Asynchronous Communications Example of PutSchedule
	3.3 Synchronous Communications Example of PutSchedule
	3.4 Asynchronous Communications Example of GetSchedule
	3.5 Synchronous Communications Description of GetSchedule

	4.0 EIDE SMXP Data Communications Protocol Conventions
	4.1 SysGenID Conventions
	4.2 ResponseSysGenID Conventions
	4.3 Identifying Data Conventions
	4.4 Acknowledgement Conventions
	4.5 Get Methods Conventions
	4.6 Put Meter Conventions
	4.7 Put Schedule Conventions
	4.8 StartTime and StopTime Conventions
	4.9 Data Compression Conventions

	 5.0 Security, Identity, and Authenticity
	6.0 Design Considerations
	7.0 References
	8.0 Sample Documents
	 Appendix 1 — Implementation Guidelines and Practices
	EIDE Implementation Guidelines and Practices
	Data Methods
	Data Messages
	Schema Validation Issues
	Schedule Description
	Other Guidelines
	Conclusion

