Priority Services Hierarchy Framework

A Priority Services Hierarchy (PSH) is a key building block to a successful AOCE implementation. During phase one of the AOCE process an ISO is required to issue Capacity Supply Obligations (CSO) to the Owners of Approved Capacity Commitment (ACC), and pay the owner an uplift, perhaps 10% over and above the ACC's face value, in return for taking the risk to secure the ACC. This process is referred to as the CSO Issuance Process (CSOIP).

After issuing CSO's to satisfy individual State based energy targets – the first priority in AOCE, the next step is to secure services based on a PSH. In phase two of CSOIP, CSO's are issued based on cost and the precedence order of services indicated in the PSH, in sufficient quantity to meet reliability requirements. The Acquisition Target column, shown below, represents the percentage of "forecasted demand" that is needed from a supply resources (adjusted for losses) in order to ensure a reliable/resilient system. For example, if forecasted demand is 10,000 MW and an ISO requires 1% of Fast Frequency Response (FFR) the total would be 100 MW's (plus a loss factor) of capacity from resources offering this type of service.

A strawman example of a PSH follows:

Precedence	Purpose	Service Type	Response	Performance	Minimum	Subject to	Acquisition
			Requirement	Operating	Duration	Minimum	Target %
				Range		Offer	
						Price	
1	Essential	Fast	4 seconds	1 MW – 3	24 hours	Y	1
	Reliability	Frequency		MW			
	Services	Response					
	(ERS)	(FFR)					
		(i.e. AGC and					
		UFR on DR					
		side)					
2	Essential	Frequency	5 minutes	1 MW –	24 hours	Y	1
	Reliability	Regulation		2000 MW			
	Services	(PFR) (i.e.					
	(ERS)	rapid					
		ramping)					
3	Essential	Voltage	15 minutes	1 Mvar –	24 hours	Y	
	Reliability	Control		100 Mvar			
	Services	(Reactive					
	(ERS)	Power)					
4	Essential	Voltage Ride	5 minutes	3 volts	24 hours	Y	
	Reliability	through (see					
	Services	IEEE 1547-					
	(ERS)	2018)					
5	Essential	Frequency	10 seconds	59.7 – 60.3	24 hours	Y	
	Reliability	Ride Through					
	Services	(see IEEE					
	(ERS)	1547-2018)					
6	Essential	Synchronized	10 minutes	100 MW –	24 hours	Y	10
	Reliability	Reserves		500 MW			
	Services						
	(ERS						

7	Essential Reliability Services	Non- Synchronized Reserves	30 minutes	100 MW – 500 MW	24 hours	Y	5
0	(EKS Recolored	Bulk Dowor	1 day		24 × 7	v	65
0	Gen	Generation	1 uay	2500 MW	24 X /	T	05
9	Balancing	Flexible	15 minutes	1 MW – 500	24 hours	Y	10
		Dispatch		MW			
10	Balancing	Fast Up	5 minutes	20 MW –	1 hour	Y	3
		Ramping		500 MW			
11	Balancing	Fast Down	5 minutes	20 MW –	1 hour	Y	3
		Ramping		500 MW			
12	Contingency	Inertial					
	Response	Response					

Guidance for construction of the PSH should follow the NERC guidelines for Grid Reliability Services, available here: <u>https://www.nerc.com/comm/Other/essntlrlbltysrvcstskfrcDL/ERSTF%20Concept%20Paper.pdf#search=erstf</u> or the latest version is of this NERC document and proposed changes to reserve acquisition proposed by PJM in section I.B.2 of <u>https://elibrary.ferc.gov/idmws/common/opennat.asp?fileID=15199895</u>

Mike Milligan's article on "Sources of grid reliability services"

https://www.sciencedirect.com/science/article/pii/S104061901830215X?openDownloadIssueModal =true