
 Open Field Message Bus (OpenFMB) Model Business Practices
Table of Contents

EXECUTIVE SUMMARY	1
INTRODUCTION	3
Business Processes and Practices	4
RMQ.26 	Overview	4
RMQ.26.1 	Principles	4
RMQ.26.2	Definitions, Abbreviations and Acronyms	6
RMQ.26.2.A	Business Definitions	6
RMQ.26.2.B	Technical Definitions	6
RMQ.26.2.C	Abbreviations and Acronyms	9
RMQ.26.3	Model Business Practices for Open Field Message Bus (OpenFMB)	10
RMQ.26.3.1	OpenFMB General Model Business Practices	10
RMQ.26.3.2	OpenFMB Operational Model Business Practices	12
RMQ.26.3.3	OpenFMB Management Services Model Business Practices	13
RMQ.26.3.4	OpenFMB Cross-Cutting Model Business Practices	14
RMQ.26.4	OpenFMB Framework	16
RMQ.26.4.1	OpenFMB Framework Overview	16
RMQ.26.4.2	OpenFMB Framework Organization	18
RMQ.26.5	OpenFMB Framework Reference Architecture	19
RMQ.26.5.1	OpenFMB Operational Logical Architecture	19
RMQ.26.5.2	OpenFMB Management Services Logical Architecture	23
RMQ.26.5.3	OpenFMB Cross-Cutting Logical Architecture	26
RMQ.26.5.4	OpenFMB Node Architecture Examples	27
RMQ.26.6	OpenFMB Framework Approach	31
RMQ.26.6.1	OpenFMB Business Case Approach	31
RMQ.26.6.2	OpenFMB Use Case Approach	32
RMQ.26.6.2.1 OpenFMB Use Case Actor and Activity Approach	32
RMQ.26.6.2.2 OpenFMB Use Case Requirements Approach	33
RMQ.26.6.3	OpenFMB Data and Interaction Modeling Approach	35
RMQ.26.6.3.1 OpenFMB Interaction Modeling Approach	35
RMQ.26.6.3.2 OpenFMB Profile Platform Independent Approach	36
RMQ.26.6.3.3 OpenFMB Profile XSD Platform Specific Approach	39
RMQ.26.6.3.4 OpenFMB Profile IDL Platform Specific Approach	45
RMQ.26.6.4	OpenFMB Implementation Approach	46
RMQ.26.6.4.1 OpenFMB Node Definition Approach	46
RMQ.26.6.4.2 OpenFMB Node Installation Approach	46
RMQ.26.6.4.3 OpenFMB Node Update Approach	47
RMQ.26.7	OpenFMB Framework Technical Architecture	49
RMQ.26.7.1	OpenFMB Profile Schemas	49
RMQ.26.7.2	OpenFMB Publish-Subscribe Middleware Reference Implementation	50
RMQ.26.7.2.1 OpenFMB Publish-Subscribe Middleware Introduction	50
RMQ.26.7.2.2 OpenFMB Data-Centric Reference Implementation	50
RMQ.26.7.2.3 OpenFMB Message Orientated Middleware Reference Implementation	53
Appendices	58
Appendix A – OpenFMB Framework Relationship to Other Smart Grid Architectures	58
A.1 Relationship to the SGAM Architecture	58
A.2 Relationship to the GWAC Stack	59
Appendix B OpenFMB Reference Implementation	61
B.1 Sample Use Cases	61
B.1.1 Microgrid Optimization Use Case Narrative	62
B.1.2 Unscheduled Islanding Transition Use Case Narrative	64
B.1.3 Island to Grid Connected Transition Case Narrative	66
B.2.1 PIM Overview	68
B.2.2 PIM Data profiles	69
B.2.3 PIM Interaction Patterns	85
B.2.3.1 Reading Interaction Pattern	86
B.2.3.2 Control Interaction Pattern	87
B.2.3.3 Event Interaction Pattern	88
B.3 Platform Specific Model	89
B.3.1 XML Schema Definition (XSD) Profiles	89
B.3.2 Interface Description Language (IDL) Profiles	89
B.3.3 Example Payload Instance	89
Appendix C Examples of OpenFMB Application/Adapter Functions	90
EXECUTIVE SUMMARY	1
INTRODUCTION	3
Business Processes and Practices	4
REQ.26 	Overview	4
REQ.26.1 	Principles	4
REQ.26.2	Definitions, Abbreviations and Acronyms	5
REQ.26.2.A	Business Definitions	5
REQ.26.2.B	Technical Definitions	5
REQ.26.2.C	Abbreviations and Acronyms	8
REQ.26.3	Model Business Practices for Open Field Message Bus (OpenFMB)	9
REQ.26.3.1	OpenFMB General Model Business Practices	9
REQ.26.3.2	OpenFMB Operational Model Business Practices	11
REQ.26.3.3	OpenFMB Management Services Model Business Practices	12
REQ.26.3.4	OpenFMB Cross-Cutting Model Business Practices	13
REQ.26.4	OpenFMB Framework	15
REQ.26.4.1	OpenFMB Framework Overview	15
REQ.26.4.2	OpenFMB Framework Organization	17
REQ.26.5	OpenFMB Framework Reference Architecture	18
REQ.26.5.1	OpenFMB Operational Logical Architecture	18
REQ.26.5.2	OpenFMB Management Services Logical Architecture	20
REQ.26.5.3	OpenFMB Cross-Cutting Logical Architecture	22
REQ.26.5.4	OpenFMB Node Architecture Examples	23
REQ.26.6	OpenFMB Framework Approach	26
REQ.26.6.1	OpenFMB Business Case Approach	26
REQ.26.6.2	OpenFMB Use Case Approach	27
REQ.26.6.2.1 OpenFMB Use Case Actor and Activity Approach	27
REQ.26.6.2.2 OpenFMB Use Case Requirements Approach	28
REQ.26.6.3	OpenFMB Data and Interaction Modeling Approach	30
REQ.26.6.3.1 OpenFMB Interaction Modeling Approach	30
REQ.26.6.3.2 OpenFMB Profile Platform Independent Approach	31
REQ.26.6.3.3 OpenFMB Profile Platform Specific Approach	33
REQ.26.6.4	OpenFMB Implementation Approach	37
REQ.26.6.4.1 OpenFMB Node Definition Approach	37
REQ.26.6.4.2 OpenFMB Node Installation Approach	37
REQ.26.6.4.3 OpenFMB Node Update Approach	38
REQ.26.7	OpenFMB Framework Technical Architecture	40
REQ.26.7.1	OpenFMB Profile Schemas	40
REQ.26.7.2	OpenFMB Publish-Subscribe Middleware Reference Implementation	41
REQ.26.7.2.1 OpenFMB Publish-Subscribe Middleware Introduction	41
REQ.26.7.2.2 OpenFMB Data-Centric Reference Implementation	41
REQ.26.7.2.3 OpenFMB Message Orientated Middleware Reference Implementation	43
Appendices	46
Appendix A – OpenFMB Framework Relationship to Other Smart Grid Architectures	46
A.1 Relationship to the SGAM Architecture	46
A.2 Relationship to the GWAC Stack	47
Appendix B Example OpenFMB Implementation	49
B.1 Sample Use Cases	49
B.1.1 Microgrid Optimization Use Case Narrative	50
B.1.2 Unscheduled Islanding Transition Use Case Narrative	52
B.1.3 Island to Grid Connected Transition Case Narrative	54
B.2.1 PIM Overview	56
B.2.2 PIM Data profiles	57
B.2.3 PIM Interaction Patterns	65
B.2.3.1 Reading Interaction Pattern	66
B.2.3.2 Control Interaction Pattern	67
B.2.3.3 Event Interaction Pattern	68
B.3 Platform Specific Model	69
B.3.1 Interface Description Language (IDL) Profiles	69
B.3.2 XML Schema Definition (XSD) Profiles	69
B.3.3 Example Payload Instance	69
Appendix C Examples of OpenFMB Application/Adapter Functions	70

	Name of intervening person
	Brief description of the changes introduced
	Rev #
	Document sent

	
	
	
	
To
	
Date

	Joe Zhou, Stuart Laval
	Creating the outline draft for TF review
	V0.1
	
	

	Joe Zhou, Stuart Laval
	Updating outline draft for TF meeting on May 1st 2015
	V0.2
	
	

	Joe Zhou, Stuart Laval
	Updating outline draft for TF as the result of NAESB call on 05/15/2015 at NREL.
	V0.3
	
	

	Terry Saxton
	Updated the formatting to follow the ESPI NAESB book example
	V0.4
	NAESB Office
	6-24-2015

	 Terry Saxton
	Updated writing assignments
	V0.4
	NAESB Office
	6-26-2015

	 Larry Lackey
	Added text for Sect. 3, model business practices,
	
	 Terry Saxton
	 7-9-2015

	 Terry Saxton
	Updated descriptions for contents of some sections
	V0.5
	 NAESB Office
	7-9-2015

	LL/SL
	Updated model business practices
	
	
	7-23-2015

	 LL/SL
	Logical architecture; update model business practices; JW systems architecture
	
	
	8-7-2015

	Terry Saxton
	Incorporated SH updates Sects. 4.5, 4.6, 5; minor edits; accepted all changes
	V0.6
	Authors
	8-30-2015

	Joe Zhou, David Fulmer
	Update and comment throughout the document
	V0.6
	Authors
	9-10-2015

	Jim Waight
	updated figures in the Architecture sections
	V0.6
	Authors
	9-11-2015

	Larry Lackey
	Revised cross-cutting; added interaction patterns and some definitions; other edits
	V0.6
	Authors
	9-12-2014

	Terry Saxton
	Overall edit of all sections
	V0.6
	Authors and NAESB Office
	9-13-2015

	Terry Saxton
	Incorporated all updates from 9/14 meeting and renumbered some sections, updated Fig 4.3-1
	V0.7
	Authors and NAESB Office
	9-18-2015

	Larry Lackey
	Revised introduction and cross-cutting; misc edits
	V0.7
	Authors
	9-22-2015

	Terry Saxton
	Incorporated changes agreed to from 9/25 meeting
	V0.7
	Authors
	9-27-2015

	David Fulmer
	Updated Figures 26.4.1-3 through 8 Cap Bank and Substation Example 1 - 6
	V0.7
	Authors
	9-29-2015

	David Fulmer
	Updated REQ.26RMQ.26.1 Principles
	V0.7
	Authors
	10-8-15

	Larry Lackey
	Definition; SGIP operational node diagram, misc edits
	V0.7
	Authors
	10-8-15

	Terry Saxton
	Accepted all updates made to v0.7 as well as comments from 10/9 meeting, some reformatting of figures, minor editing
	V0.8
	Authors
	10-13-15

	Larry Lackey
	Reorganization from 10/16/15 meeting
	V0.81
	Authors
	10-27-15

	Group
	10/30/15 NAESB Call
	
	
	10-30-15

	Larry Lackey
	Security, Technical Architecture, Logical Architecture, IDL Approach, misc edits
	
	Authors
	11-8-15

	Shawn Hu
	UML Updates
	
	Authors
	11-10-15

	David Lawrence
	Misc updates
	
	Authors
	11-12-15

	Larry Lackey
	Middleware Updates
	
	Authors
	11-12-15

DOCUMENT HISTORY
Open Field Message Bus (OpenFMB) Draft Recommendation

ii
NAESB 2015
[bookmark: _Toc435092604][bookmark: _Toc67805844][bookmark: _Toc119917484][bookmark: _Toc301774987]EXECUTIVE SUMMARY

In the power utility industry today, there are many electric grid devices that support different features and functionality both within substations and along the transmission and distribution lines, including devices at the edge where of customers are connected. These devices use a variety of communication and protocol standards, in many cases proprietary in nature, which have prevented most of these devices from being capable of communicating peer-to-peer with other devices in the field, let alone exchange data and information for local intelligence and decision making. With the advent and investment of smart grid technologies and Advanced Metering Infrastructure (AMI), the number of intelligent devices has increased dramatically, resulting in the proliferation of even more communication and data exchange protocols for these devices.

Now commercially available, open internet standards unlock actionable information about each device’s extended environment. Sharing this information in a common community of interest opens the door for new and augmented devices to become more intelligent. By cooperating with other devices, participating devices expand their role, doing more in a timely and secure fashion, and foster innovation in the marketplace. In addition, more and more timely information is available in operations centers, which supplements existing systems and improves situational awareness.

[image:]

The diagram on the left illustrates the common current situation where different grid services are provided by heterogeneous siloed systems often installed over many years and that move information from field devices to utility central office head ends. In this situation communications between field devices in different silos occurs at the utility central office though an enterprise service bus.

In contrast, the diagram on the right illustrates how field communications between OpenFMB nodes unlock actionable information about each existing device’s extended environment, thus enabling local action. New devices participating in the field communications provide finer-grained information broadening the scope of possible local actions. At the utility central office, information from OpenFMB nodes regarding local actions and information from new field devices supplements information from existing systems and improves situational awareness.

This document is a framework for Utility Service Providers to use in creating an Open Field Message Bus to meet its current and future needs. The framework has three parts:
· OpenFMB Reference Architecture
The reference architecture describes the OpenFMB logical architecture and node architecture examples. Operational (data path), management services, and cross-cutting logical architectures are discussed.

· OpenFMB Framework Approach
The framework approach describes an approach for creating a Utility Service Provider specific Open Field Message Bus from the business case, through use case(s), to data and interaction modeling, and implementation.

· OpenFMB Technical Architecture
The technical architecture describes specific technical choices and configurations tested in interoperability demonstrations and test beds.

OpenFMB is a voluntary model business practice for a non-proprietary and standards-based field message bus to enable these power systems field devices to interoperate. It will be used by device vendors and/or utilities to develop the technical requirements to be implemented on field devices that will enable them to communicate directly with each other via a field message bus as well as to centralized data centers as they do today without rip and replacement by economically using standard internet technologies.

[bookmark: _Toc435092605]INTRODUCTION
The North American Energy Standards Board (NAESB) is a voluntary non-profit organization comprised of members from all aspects of the natural gas and electric industries. Within NAESB, the Retail Electric Quadrant (REQ) and the Retail Gas Quadrant (RGQ) focus on issues impacting the retail sale of energy to Retail Customers. REQ / RGQ Model Business Practices are intended to provide guidance to Distribution Companies, Suppliers, and other Market Participants involved in providing energy service to Retail Customers. The focus of this document isthese Model Business Practices foris the Open Field Message Bus (OpenFMB).
Field devices today are generally uninformed of other devices and events around them because of expensive and non-interoperable proprietary technology.
Now commercially available, open internet standards unlock actionable information about each device’s extended environment. Sharing this information in a common community of interest opens the door for new and augmented devices to become more intelligent. By cooperating with other devices, participating devices expand their role, doing more in a timely and secure fashion, and foster innovation in the marketplace. In addition, more and more timely information is available in operations centers, which supplements existing systems and improves situational awareness
OpenFMB provides customer-enabling dynamic coordination and self-optimization of electric grid edge field operations. A Utility Service Provider can use OpenFMB as a framework for specifying its chosen OpenFMB configuration using OpenFMB operational, management services, and cross-cutting model business practices to enforce open standards and interoperability requirements in its procurement process.
These Model Business Practices are voluntary and do not address policy issues that are the subject of state legislation or regulatory decisions. These voluntary Model Business Practices have been adopted by NAESB with the realization that, as the industry evolves, additional and amended Model Business Practices may be necessary. Any industry participant seeking additional or amended Model Business Practices (including principles, definitions, data elements, process descriptions, and technical implementation instructions) should submit a request to the NAESB office, detailing the change, so that the appropriate process may take place to amend the Model Business Practice.

[bookmark: _Toc435092606]Business Processes and Practices
[bookmark: _Toc435092607]REQ.26RMQ.26 	Overview
[bookmark: _Toc435092608]REQ.26RMQ.26.1 	Principles
REQ.26RMQ.26.1.1	OpenFMB should provide a framework for Utility Service Providers to identify and address high value business use cases.
REQ.26RMQ.26.1.2	OpenFMB should foster innovative applications that support grid functions by analyzing OpenFMB data and potentially requesting appropriate actions.
REQ.26RMQ.26.1.3	OpenFMB should unlock actionable information about each field device’s extended environment and share this information in a common community of interest.
REQ.26RMQ.26.1.4	OpenFMB should enable interoperability between field devices to avoid stranded assets or rip-and-replace.
REQ.26RMQ.26.1.5	OpenFMB should enable a Utility Service Provider to specify its chosen OpenFMB configuration and enforce open standards and interoperability requirements in the Utility Service Provider’s procurement process.
REQ.26RMQ.26.1.6	OpenFMB should be consistent with any related requirements established by the Applicable Regulatory Authority and Governing Documents.
RMQ.26.1.7	The OpenFMB framework should leverage and support open and industry standards.
RMQ.26.1.8	The OpenFMB framework should support multiple protocols through adapters.
RMQ.26.1.9	OpenFMB data profiles should be based on the IEC Common Information Model (CIM) to foster interoperability
RMQ.26.1.10	The OpenFMB framework should support user defined new or extended data profiles to enable additional use cases and functionality. User should be encouraged to submit such profiles to the NAESB process for future OpenFMB standard revisions.
RMQ.26.1.11	The OpenFMB framework should support the full OpenFMB Node lifecycle including provisioning, upgradability, configurability, security, and scalability.

RMQ.26

[bookmark: _Toc435092609]REQ.26RMQ.26.2	Definitions, Abbreviations and Acronyms
[bookmark: _Toc435092610]REQ.26RMQ.26.2.A	Business Definitions

RXQ.0.2.1	Applicable Regulatory Authority: The state regulatory agency or other local governing body that provides oversight, policy guidance, and direction to any parties involved in the process of providing energy to Retail Customers through regulations and orders.
RXQ.0.2.22	Governing Documents: Documents that determine the interactions among parties, including but not limited to: applicable law, regulatory documents (e.g., tariffs, rules, regulations), contractual agreements, Distribution Company Operational Manuals, and other relevant models and operational procedures.

[bookmark: _Toc435092611]REQ.26RMQ.26.2.B	Technical Definitions

REQ.26RMQ.26.2.1t	OpenFMB Adapter: A pluggable module from any supplier that works within an OpenFMB node according to this NAESB REQ.26RMQ.26 and that provides uni-directional or bi-directional exchange of information between OpenFMB data profiles and other legacy protocols and conventional formats such as DNP3, Modbus, IEC 61850 ASCI, C12, CoAP, XMPP, or others.
REQ.26RMQ.26.2.2t	OpenFMB Application: A pluggable module from any supplier that works within an OpenFMB node according to this NAESB REQ.26RMQ.26 and that supports grid functions by analyzing OpenFMB data and potentially requesting appropriate actions.
REQ.26RMQ.26.2.3t	OpenFMB Application and Adapter Layer: An OpenFMB logical component that hosts OpenFMB Adapters or OpenFMB applications.
REQ.26RMQ.26.2.4t	OpenFMB Configuration Parameters: Updateable information that adjusts field message bus behavior under the control of OpenFMB management services
REQ.26RMQ.26.2.5t	OpenFMB Data Profile: A platform independent description of payloads exchanged among various OpenFMB adapters and applications. Profiles reflect the minimum explicitly shared and consistent data attributes required for each unique interaction within a specific use case.
REQ.26RMQ.26.2.6t	OpenFMB Interaction Pattern: A platform independent sequence diagram fragment referenced by other sequence diagrams that describes a common sequence of interactions and qualities of service utilized within different use cases.
REQ.26RMQ.26.2.7t	OpenFMB Interface Layer: An OpenFMB logical component that defines multiple levels of interoperability including data profiles, configuration parameters, and interaction patterns. It also abstracts functionality supporting availability, resiliency, integrity, identity, authentication, authorization, confidentiality, and auditing. It provides services to OpenFMB Applications and Adapters and appropriately invokes the OpenFMB Publish-Subscribe Middleware Layer.
REQ.26RMQ.26.2.8t	OpenFMB Management Services Administration: An OpenFMB logical component that stages updates for nodes that it administers and also receives audit information and alerts as well as performing near-real-time node health monitoring.
REQ.26RMQ.26.2.9t	OpenFMB Management Services Layer: An OpenFMB logical component through which nodes can be monitored and audited, alerts received, and under appropriate policies updated
REQ.26RMQ.26.2.10t	OpenFMB Management Services Plug-in: A pluggable management services module from any supplier that supplements standard OpenFMB Management Services functions.
REQ.26RMQ.26.2.11t	OpenFMB Message Payload: An OpenFMB Data Profile instance in a platform specific format exchanged between nodes.
REQ.26RMQ.26.2.12t	OpenFMB Message Topic: A stream of OpenFMB Message Payload instances of one specific type sent from message publishers to message subscribers. OpenFMB Message Topic names are base names related to the associated OpenFMB Data Profile.
REQ.26RMQ.26.2.13t	OpenFMB Node: A physical or virtual component from any supplier that provides the services according to this NAESB REQ.26RMQ.26.
REQ.26RMQ.26.2.14t	OpenFMB Publish-Subscribe Middleware Client Layer: An OpenFMB logical component that hosts publish-subscribe middleware client software from any supplier according to this NAESB REQ.26RMQ.26.
REQ.26RMQ.26.2.15t	Utility Service Provider: A utility, service provider, or operator and its relevant contracted agents which provide distribution, transmission, microgrid, energy, or similar services in a given area.

[bookmark: _Toc435092612]REQ.26RMQ.26.2.C	Abbreviations and Acronyms

	Abbreviation / Acronym
	Meaning

	AMQP
	Advanced Message Queuing Protocol

	C12
	ANSI Protocol specification for interfacing to data communication networks typical in the FAN and NAN.

	CIM
	Common Information Model

	DDS
	Data Distribution Service Middleware

	DNP3
	Distributed Network Protocol (ref. IEEE1379-2000)

	DIP
	Distributed Intelligence Platform

	ESB
	Enterprise Service Bus

	GWAC
	GridWise Architecture Council

	IEC
	International Electrotechnical Commission

	IEC 61850
	IEC Standard for substation automation

	IED
	Intelligent Electronic Device

	IoT
	Internet of Things

	MQTT
	Message Queuing Telemetry Transport

	Modbus
	Serial communications protocol

	NAESB
	North American Energy Standards Board

	OMG
	Object Management Group

	OT/IT
	Operational Technologies/Information Technology

	PIM
	Platform Independent Model

	PSM
	Platform Specific Model

	SGAM
	Smart Grid Architecture Model

	SGIP
	Smart Grid Interoperability Panel

	SNMP
	Simple Network Management Protocol

[bookmark: _Toc435092613]REQ.26RMQ.26.3	Model Business Practices for Open Field Message Bus (OpenFMB)
[bookmark: _Toc435092614]REQ.26RMQ.26.3.1	OpenFMB General Model Business Practices

OpenFMB General Model Business Practice place OpenFMB within the overall setting of an Utility Service Provider.

REQ.26RMQ.26.3.1.1	To the extent required by the Applicable Regulatory Authority or as agreed by the Utility Service Provider consistent with any requirement of the Applicable Regulatory Authority, systems for customer enabling dynamic coordination and self-optimization of electric grid edge field operations should operate as set forth in this NAESB REQ.26RMQ.26, subject to the Governing Documents. This NAESB REQ.26RMQ.26 does not compel the use of Open Field Message Bus; however, systems claiming to comply with NAESB REQ.26RMQ.26 should comply as defined herein.

REQ.26RMQ.26.3.1.2	The Utility Service Provider should use this REQ.26RMQ.26 as a framework for specifying its chosen OpenFMB configuration using REQ.26RMQ.26 operational, management services, and cross-cutting model business practices to enforce open standards and interoperability requirements in the Utility Service Provider’s procurement process.

REQ.26RMQ.26.3.1.3	OpenFMB implementations should fit within the Utility Service Provider’s overall business procedures. For example, Utility Service Provider-wide security activities such as Electricity Subsector Cybersecurity Risk Management Process, Electricity Subsector Cybersecurity Capability Maturity Model Version 1.1 , Energy Sector Cybersecurity Framework Implementation Guidance , and Framework for Improving Critical Infrastructure Cybersecurity Core Mapping to National Institute of Standards and Technology (NIST) Interagency Report (IR) 7628 should guide OpenFMB implementations. Utility Service Provider-wide Common Governance, Risk, and Compliance (GRC) requirements and Common Technical Requirements (CTR) from NISTIR 7628 User's Guide and NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity as well as various NISTIR 7628 Unique Technical Requirements (UTR) may also apply to the OpenFMB implementation.

REQ.26RMQ.26.3.1.4	New and revised OpenFMB Message Payloads Data Profiles should be defined using the profiling approach described in this NAESB REQ.26RMQ.26. Current OpenFMB Message Payloads and mappings to other representationsData Profiles are maintained as part of this NAESB REQ.26RMQ.26 and should be used in OpenFMB implementations.

REQ.26RMQ.26.3.1.5	New and revised OpenFMB Message Topics should be defined using the approach described in this NAESB REQ.26RMQ.26. Current OpenFMB Message Topics are maintained as part of this NAESB REQ.26RMQ.26 and should be used in OpenFMB implementations.

REQ.26RMQ.26.3.1.6	New or revised technology options for satisfying operational, management services, or cross-cutting model business practices should be developed using the approach described in this NAESB REQ.26RMQ.26. Current OpenFMB technology options are maintained as part of this NAESB REQ.26RMQ.26 and should be used in OpenFMB implementations.

[bookmark: _Toc435092615]REQ.26RMQ.26.3.2	OpenFMB Operational Model Business Practices

OpenFMB Operational Model Business Practice relate to flow of OpenFMB information during normal business operations.

REQ.26RMQ.26.3.2.1	OpenFMB implementations should provide adapters to common utility protocols (e.g. DNP3, Modbus, IEC 61850 ASCI, C12) for interoperability with existing physical plant. Such adapters can be at either physical or virtual Utility Service Provider specified OpenFMB nodes.

REQ.26RMQ.26.3.2.2	OpenFMB implementations should provide applications for grid functionality. Such applications can be at either physical or virtual Utility Service Provider specified OpenFMB nodes.

REQ.26RMQ.26.3.2.3	OpenFMB nodes may provide interfaces to a variety of sensor options.

REQ.26RMQ.26.3.2.4	OpenFMB implementations should use OpenFMB Message Payloads for communications between OpenFMB Nodes.

REQ.26RMQ.26.3.2.5	OpenFMB implementations should use OpenFMB Message Topics for communications between OpenFMB Nodes.

REQ.26RMQ.26.3.2.6	OpenFMB nodes should provide OpenFMB Interaction Patterns and qualities of service (QoS).

REQ.26RMQ.26.3.2.7	OpenFMB nodes should provide many-to-many publish-subscribe exchange using industry standard protocols with a defined wire protocol available from multiple vendors.

REQ.26RMQ.26.3.2.8	OpenFMB nodes should provide a variety of wired and wireless communications options.

REQ.26RMQ.26.3.2.9	OpenFMB nodes should be extensible to support Utility Service Provider defined use cases and functionality beyond that in this REQ.26RMQ.26. However, interoperability of the extended functionality is the responsibility of parties involved in the extension.

[bookmark: _Toc435092616]REQ.26RMQ.26.3.3	OpenFMB Management Services Model Business Practices

OpenFMB Management Services Model Business Practice concern deployment, maintenance, auditing, and health monitoring of OpenFMB installations.

REQ.26RMQ.26.3.3.1	OpenFMB nodes should self-provision using the node’s secure individual identity and a well-known parameter-driven secure initialization point. Installers may provide the secure initialization point with detailed location and sensor information.

REQ.26RMQ.26.3.3.2	OpenFMB nodes should audit and communicate events according to appropriate policies, including those for non-repudiation.

REQ.26RMQ.26.3.3.3	OpenFMB nodes should monitor and manage OpenFMB components and operating systems.

REQ.26RMQ.26.3.3.4	OpenFMB nodes should provide a single automatic mechanism for necessary updates of specific operating system components.

REQ.26RMQ.26.3.3.5	OpenFMB nodes should provide a single mechanism for Utility Service Provider-defined timing of operating system updates.

REQ.26RMQ.26.3.3.6	OpenFMB nodes should provide a single mechanism for rollback of at least each previous operating system update.

REQ.26RMQ.26.3.3.7	OpenFMB nodes should provide a single automatic mechanism for necessary updates of OpenFMB components.

REQ.26RMQ.26.3.3.8	OpenFMB nodes should provide a single mechanism for Utility Service Provider-defined timing of OpenFMB components updates.

REQ.26RMQ.26.3.3.9	OpenFMB nodes should provide a single mechanism for rollback of at least each previous OpenFMB component update.

[bookmark: _Toc435092617]REQ.26RMQ.26.3.4	OpenFMB Cross-Cutting Model Business Practices

OpenFMB Cross-Cutting Model Business Practice apply to OpenFMB General, Operational, and Management Services Model Business Practices.

REQ.26RMQ.26.3.4.1	OpenFMB implementations should employ a defense in depth layered security approach based upon threat analysis and mitigation steps derived from following the Utility Service Provider's governance, risk, and compliance approach.

REQ.26RMQ.26.3.4.2	OpenFMB implementations should be highly available and resilient through minimizing the frequency, degree, and duration of degradation. Approaches include adequate performance for priority operations even when degraded, isolation to reduce the impact of degraded parts upon other parts, redundancy to provide alternatives to degraded parts, and intelligence to adapt to degraded conditions. An OpenFMB node can augment but not replace an end device’s internal sensing and operational control functions.

REQ.26RMQ.26.3.4.3	OpenFMB implementations should provide high integrity of the code and parameters that run on a node, telecommunications, and operational functions to help minimize the degree of any degradation. Approaches include appropriate test scenarios, digital signatures, and hash-based authentication.

REQ.26RMQ.26.3.4.4	OpenFMB nodes should have a secure individual identity for any interactions with other nodes.

REQ.26RMQ.26.3.4.5	OpenFMB nodes should mutually authenticate before communicating with each other.

REQ.26RMQ.26.3.4.6	OpenFMB nodes should mutually authorize message topics before communicating operational data with each other.

REQ.26RMQ.26.3.4.7	OpenFMB nodes should provide confidentiality for data in motion and data at rest in accordance with the Utility Service Provider’s risk management process, node capabilities, and desired node performance while considering networking best practices such as Internet Engineering Task Force (IETF) and IPsec.

REQ.26RMQ.26.3.4.8	When communication is available, OpenFMB nodes should use the current configuration parameters to retrieve updated configuration parameters.

REQ.26RMQ.26.3.4.9	When communication is not available, OpenFMB nodes should operate independently using the current configuration parameters until communication is available to retrieve and implement updated communications parameters.

REQ.26RMQ.26.3.4.10	OpenFMB nodes may provide network function virtualization (NFV) services such VLAN and Time Sensitive Networking.

REQ.26RMQ.26.3.43.11	OpenFMB nodes should run a minimal or real-time open source operating system available from multiple vendors.

REQ.26RMQ.26.3.4.12	OpenFMB nodes should run an operating system with extended vendor support.

REQ.26RMQ.26.3.4.13	OpenFMB nodes should run with operating system security services.

REQ.26RMQ.26.3.4.14	OpenFMB nodes should support native code (e.g. C and C++) adapters and applications.

REQ.26RMQ.26.3.4.15	OpenFMB nodes may support Java or Python adapters and applications.

REQ.26RMQ.26.3.4.16	OpenFMB nodes should use virtualization and/or containers to isolate its OpenFMB components running on the same physical hardware platform.

REQ.26RMQ.26.3.4.17	OpenFMB nodes may be available within a virtual environment of end device hardware that performs an operational, telecommunications, or computing function.

REQ.26RMQ.26.3.4.18 OpenFMB nodes should be available in a variety of physical form factors appropriate for particular environments.

[bookmark: _Toc435092618]REQ.26RMQ.26.4	OpenFMB Framework

[bookmark: _Toc435092619]REQ.26RMQ.26.4.1	OpenFMB Framework Overview

Field devices today are generally uninformed of other devices and events around them because of expensive and non-interoperable proprietary technology.

Now commercially available, open internet standards unlock actionable information about each device’s extended environment. Sharing this information in a common community of interest opens the door for new and augmented devices to become more intelligent. By cooperating with other devices, participating devices expand their role, doing more in a timely and secure fashion, and foster innovation in the marketplace. In addition, more and more timely information is available in operations centers, which supplements existing systems and improves situational awareness.

[image:]
Figure 4.1-1 Current and Future States

The diagram on the left of Figure 4.1-1 illustrates the common current situation where different grid services are provided by heterogeneous siloed systems often installed over many years and that move information from field devices to utility central office head ends. In this situation communications between field devices in different silos occurs at the utility central office though an enterprise service bus.

In contrast, the diagram on the right of Figure 4.1-1 illustrates how field communications between OpenFMB nodes unlock actionable information about each existing device’s extended environment, thus enabling local action. New devices participating in the field communications provide finer-grained information broadening the scope of possible local actions. At the utility central office, information from OpenFMB nodes regarding local actions and information from new field devices supplements information from existing systems and improves situational awareness.

This field communications occurs between OpenFMB nodes that most significantly contain applications providing local grid services and adapters to field devices as well as communications, security, and node management services.

[image:]

Figure 4.1-2 Node-to-Node Interactions

Figure 4.1-2 illustrates a node on the left with an OpenFMB Application and a node on the right with an OpenFMB Adapter. OpenFMB Applications provide grid services. OpenFMB Adapters interface the field message bus with power system components utilizing DNP3, Modbus, IEC 61850 ACSI, or other protocols. Depending upon the situation, different publish-subscribe protocols such as AMQP, DDS, MQTT, or other protocols could be utilized for communications between OpenFMB nodes. On both nodes in the diagram the OpenFMB Interface Layer provides data profiles, interfaces to appropriate publish-subscribe protocols, security, and other services.

As an OpenFMB deployment grows beyond the two nodes shown in Figure 4.1-2, both the number and the types of applications and adapters grow. Publish-Subscribe communications between the nodes grows into community of interest distributed data spaces sharing focused, nuggets of cherry-pickedfunction specific information for prompt, effective action in the field. Location-specific combinations of hardwired, Wi-Fi, cellular, or other communications links ensure reliable communications between nodes.

Using now readily available, fine-grained, and actionable information about their extended environment, OpenFMB applications hosted on OpenFMB nodes in the field create the possibility for local action in the field and a framework for innovation described in this document.

[bookmark: _Toc435092620]REQ.26RMQ.26.4.2	OpenFMB Framework Organization

This REQ.26RMQ.26 document is a framework for Utility Service Providers to use in creating an Open Field Message Bus to meet its current and future needs. The framework has three parts:
· OpenFMB Reference Architecture
· OpenFMB Framework Approach
· OpenFMB Technical Architecture

The reference architecture describes the OpenFMB logical architecture and node architecture examples. Operational (data path), management services, and cross-cutting logical architectures are discussed.

The framework approach describes an approach for creating a Utility Service Provider specific Open Field Message Bus from the business case, through use case(s), to data and interaction modeling, and implementation.

The technical architecture describes specific technical choices and configurations tested in interoperability demonstrations and test beds.

[bookmark: _Toc435092621]REQ.26RMQ.26.5	OpenFMB Framework Reference Architecture

[bookmark: _Toc435092622]REQ.26RMQ.26.5.1	OpenFMB Operational Logical Architecture

[image:][image:]

Figure 5.1-1: OpenFMB Operational Logical Architecture

REQ.26RMQ.26.5.1.1 OpenFMB Application and Adapter Layer

OpenFMB Applications are located within a node and support grid functions by analyzing OpenFMB data and potentially requesting appropriate actions.

OpenFMB Adapters are located within a node and interface the field message bus with existing end devices. Their role is to map, enrich, orchestrate, route, and translate information between end devices and the field message bus. They provide uni-directional or bi-directional exchange of information between OpenFMB data profiles and other legacy protocols and conventional formats such as DNP3, Modbus, IEC 61850 ASCI, C12, CoAP, XMPP, or others. In addition, device manufacturers may, over time, provide devices with native OpenFMB functionality that eliminates the need for a separate adapter.

Multiple application and adapter instances of the same type or of different types can interact with each other through the OpenFMB Interface Layer and middleware clients. Interacting instances may span any number of nodes, although some interacting instances may be collocated on a single node depending upon the situation.

Depending upon its capabilities, a node may have any number of applications and any number of adapters. Normally, there would be at least one application or adapter.

REQ.26RMQ.26.5.1.2 OpenFMB Interface Layer

The OpenFMB interface layer defines multiple levels of interoperability.

OpenFMB data profiles describe the payloads exchanged among various OpenFMB adapters and applications. These profiles reflect the minimum explicitly shared and consistent data attributes required for each unique interaction within a specific use case.

OpenFMB configuration parameters adjust field message bus behavior under the control of OpenFMB management services.

OpenFMB interaction patterns define the sequence of interactions and qualities of service utilized within different use cases. These interactions are accomplished by invoking the publish-subscribe middleware with appropriate security.

REQ.26RMQ.26.5.1.3 OpenFMB Publish-Subscribe Middleware Client Layer

The OpenFMB publish-subscribe (pub/sub) middleware layer utilizes different pub/sub implementations from various vendors to move OpenFMB Message Payloads between nodes with a common wire protocol implementation.

[bookmark: _Toc435092623]REQ.26RMQ.26.5.2	OpenFMB Management Services Logical Architecture

[image:]
[image:]

Figure 5.2-1: OpenFMB Management Services Logical Architecture

REQ.26RMQ.26.5.2.1 OpenFMB Management Services Layer

Through the OpenFMB management services layer, nodes can be monitored and audited, alerts received, and under appropriate policies updated.

OpenFMB Management Services Plug-ins are pluggable management services modules from any supplier that supplement standard OpenFMB Management Services functions. AExample plug-in could include intrusion remediation, or behind the node device status, or policy based device configuration rules and information such as PBCONF.

Approved changes can be downloaded by a node and implemented, including:
· Node operating system updates and rollback of updates
· Node configuration parameters, interface layer, middleware client, management services, adapter, and application updates and rollback of updates
Other functions performed include:
· Node auditing
· Node’s computing resources (e.g. CPU, RAM, storage) health monitoring and alerting

REQ.26RMQ.26.5.2.2 OpenFMB Management Services Administration

The OpenFMB management services administration component stages updates for nodes that it administers. It also receives audit information and alerts and performs near-real-time node health monitoring.

The management administration component and nodes communicate with each other using the appropriate middleware client and, if necessary, broker.

[bookmark: _Toc435092624]REQ.26RMQ.26.5.3	OpenFMB Cross-Cutting Logical Architecture

Different portions of the OpenFMB logical architecture address different issues in the cross-cutting model business practices.

REQ.26RMQ.26.5.3.1 OpenFMB Management Services Layer

Through appropriately authenticated and authorized updates distributed by the OpenFMB Management Services Administration, a node’s OpenFMB Management Services Layer can configure that node’s identity and computing environment. These environment includes operating system security services and isolation approaches to protect operating system, interface layer, middle clients, management services, adapters, and applicationsOpenFMB components, and any other software running on the same physical hardware from one another.

REQ.26RMQ.26.5.3.2 OpenFMB Interface Layer

Each OpenFMB Interface Layer provides supporting services including availability, resiliency, integrity, identity, authentication, authorization, confidentiality, and auditing to OpenFMB Applications and Adapters and appropriately invokes the OpenFMB Publish-Subscribe Middleware Layer.

REQ.26RMQ.26.5.3.3 OpenFMB Application and Adapter Layer

Each OpenFMB Application and Adapter Layer consists of applications and/or adapters written in native code and other languages.

[bookmark: _Toc435092625]REQ.26RMQ.26.5.4	OpenFMB Node Architecture Examples

REQ.26RMQ.26.5.4.1 OpenFMB Node Software Components Example

[image:]

Figure 5.4-1: Example OpenFMB Node Components

Representative node software components in Figure 5.4.1-1 from the lower to upper layers include:
· Operating System including related device drives, which may be specific to the hardware manufacturer.
· OpenFMB Management Services Layer with associated OpenFMB Interface Layer and Publish-Subscribe Middleware. Since this group manages and updates other OpenFMB software groups, it functions in the host operating system in order to have access to the other groups.
· OpenFMB Application and Adapter groups showing three possible configurations. These groups are isolated from one another for protection in case of malfunctionsmitigation against cross-contamination:
· A specific OpenFMB Application with associated OpenFMB Interface Layer and Publish-Subscribe Middleware isolated in one group.
· A specific OpenFMB Adapter with associated OpenFMB Interface Layer and Publish-Subscribe Middleware isolated in another group.
· Related OpenFMB Application and OpenFMB Adapter with associated OpenFMB Interface Layer and Publish-Subscribe Middleware isolated in a group.

REQ.26RMQ.26.5.4.2 OpenFMB Node Hardware Components Example

Node hardware and software components such as processor, memory, operating system, and so forth are specified based upon relevant business processes. The relationship of OpenFMB components with the operating system and other programs can vary depending upon hardware capabilities.

Dedicated OpenFMB System Instance

[image:]	Comment by Lawrence, David C.: I see that OS is part of OpenFMB Node, but I will still add and OS layer between Hardware and OpenFMB node for clarity.

Figure 5.4-2 Dedicated OpenFMB System Instance

The greatest isolation is provided by a dedicated system hardware instance that hosts an OpenFMB node. Non-OpenFMB programs can neither compete for node resources nor otherwise disrupt OpenFMB functions in this configuration.

Virtualized OpenFMB System Instance

[image:]	Comment by Lawrence, David C.: Add to OS – OS above Hypervisor; remove word Unrelated from Unrelated Operating System Instance; there is no way that it is Unrelated; say Other Operating System

[image:]	Comment by .: Changed to “Other”
Figure 5.4-3 Virtualized OpenFMB System Instance

A hypervisor isolates different operating system instances on a single hardware instance. This provides good isolation since the hypervisor governs system resources.

Shared System Instance

[image:]	Comment by Lawrence, David C.: Add OS layer

Figure 5.4-4 Shared OpenFMB System Instance

It may be necessary to run OpenFMB components in the same operating system instance as other programs. While simple, this configuration offers the greatest opportunity for intentional or unintentional interference between different programs.

Containers	Comment by .: How about referring to existing drawings as now?	Comment by Lawrence, David C.: Add a Container drawing for consistency

Some operating systems with appropriate hardware support containers. Containers provide isolation similar to that provided by hypervisors but within a single operating system instance on some operating systems with appropriate hardware support. When available, containers may provide good isolation. This is true both between programs that are part of a single system such as the three different groups of yellow boxes in Figures 5.4-1, 5.4-2, 5.4-3, and 5.4-4, which are parts of the OpenFMB installation, and also true between a system such as OpenFMB and other systems running on the same hardware such as the non-OpenFMB programs in Figure 5.4-4.

[bookmark: _Toc435092626]
REQ.26RMQ.26.6	OpenFMB Framework Approach

[bookmark: _Toc435092627]REQ.26RMQ.26.6.1	OpenFMB Business Case Approach

Commercially available, open internet standards now unlock actionable information about each field device’s extended environment. OpenFMB applications hosted on OpenFMB nodes in the field create the possibility for local action in the field. Rather than attempting to duplicate or replace existing grid functions, OpenFMB business case(s) will create the most value by and most successfully focus on local applications utilizing fine-grained information from local communities of interest for local actions that supplement existing systems.

Sample issues to consider in creating or evaluating a business case include whether the goals include one or more of the following:
· Fostering innovative products and services
· Utilizing information from outside the Utility Service Provider
· Local intelligence with coordinated self-optimization where the volume of local data overwhelms the capability to transfer the data elsewhere
· Fast response when centralized sites are too far away to respond promptly
· Resiliency when portions of the grid are segmented
· Open, observable, and auditable interfaces at multiple scales for interoperability
· Interoperability with existing assets with no rip-and-replace
· Potential unified backhaul for reduced OPEX, simplified management, and enhanced security
· Unlocking stranded assets by building adapters and applications

In addition, information from OpenFMB nodes regarding local actions and information from new field devices may supplement information from existing systems and improve overall situational awareness.

Needless to say, business cases should start with the highest value ones first, addressing nice-to-haves as appropriate.

[bookmark: _Toc435092628]REQ.26RMQ.26.6.2	OpenFMB Use Case Approach

[bookmark: _Toc435092629]REQ.26RMQ.26.6.2.1 OpenFMB Use Case Actor and Activity Approach

In the Use Case approach, field messaging functionalities and requirements are captured along with the relevant Actors. Actors are categorized into four groups: System/Application, Device, Organization, and Human.

Each Use Case scenario is detailed out in an UML Activity Diagram that focuses on the flow of actions performed by an actor which is presented in the diagram as a swim lane. In the OpenFMB case, the field messaging processes are the primary focus in the Activity Diagrams. These processes usually provide information on integration requirements, for example, an object flow cross swim lanes often indicates a messaging integration line.

An sample Activity Diagram is shown below for a Use Case process in which a Recloser publishes its status change to Battery Inverter, Microgrid Optimizer, and utility SCADA system. There are four swim lanes for the four actors involved and three object-flows (an arrowed line with square boxes) that indicates the message exchanges of Recloser Status.

[image:]

[bookmark: _Toc435092630]REQ.26RMQ.26.6.2.2 OpenFMB Use Case Requirements Approach

The next approach is to document the functional and non-functional requirements related to a Use Case. A UML Requirement box is used for both functional and non-functional requirements. The <<Functional>> stereotyped Requirements capture required data fields and the <<Non-Functional>> Requirements provide non-functional requirements such as the Quality of Service (QoS) as shown in the table below.

	Functional
	Non-Functional

	[image:]
	[image:]

[bookmark: _Toc435092631]REQ.26RMQ.26.6.3	OpenFMB Data and Interaction Modeling Approach

[bookmark: _Toc435092632]REQ.26RMQ.26.6.3.1 OpenFMB Interaction Modeling Approach

The interaction modeling approach focuses on the integration design for the requirements identified previously. Each message integration line identified in the use cases is detailed out in a UML Sequence Diagram. A Sequence Diagram basically describes integration between message providers and consumers in terms of message transaction. It presents messages in sequence based upon the Use Case.

Shown below is a sample Sequence Diagram that describes the Recloser Status message exchange. In the Sequence Diagram, details on integration are provided such as message exchange pattern (Pub/Sub), usage of Field Message Bus, and adapters for data translation.

[image:]

The Ref box at the bottom of the diagram above leads to a generic Event Pattern sequence diagram as shown below:
[image:]

Note the actors in the sequence diagrams are the same ones denoted as the swim lanes in the activity diagram shown in the Use Case.

[bookmark: _Toc435092633]REQ.26RMQ.26.6.3.2 OpenFMB Profile Platform Independent Approach

The information collected in the modeling processpreviously drives the data model design. in this approach. The OpenFMB data models are created primarily based on the IEC Common Information Model (CIM). The CIM model is a comprehensive utility industry UML model that encompasses all aspects of utility operations and planning need for distribution (IEC 61968), transmission (IEC 61970), and market communications (IEC 62325) standards. The model is basically used as a reference from which necessary classes, attributes, and associations are selected and transformed into the OpenFMB model. Note the Platform Independent Model (PIM) approach itself does not exclude other standards as reference models.
[image:]

Model restriction and extension are performed in the OpenFMB model to precisely define data profiles. Data profiles are context data models based on the requirements collected previously. Each data profile is modeled in a UML Package with a class diagram (see an example for the Recloser Status data profile) and a root class (e.g. RecloserEventModule as shown below). Classes and data types are reusable and shared across the OpenFMB data models.

[image:][image:]

After a PIM data model is defined, its Platform Specific Model (PSM) can then be generated using a model-driven tool. Note that one PIM model may be used for multiple PSMs such as XSD and IDL.

[bookmark: _Toc435092634]REQ.26RMQ.26.6.3.3 OpenFMB Profile XSD Platform Specific Approach
The Platform Specific Model (PSM) is technology dependent implementation of the PIM. XML Schema Definition (XSD) was selected asis the PSM representation for OpenFMB. An OpenFMB PSM (i.e. XSD) is directly translated from a PIM described in the section above. Shown below is an example of the Recloser Status XSD generated from its PIM. Note the XSD represents all defined items in its PIM that includes the classes, attributes, and associations.

[image:][image:]

Each data profile package has its unique namespace and settings for XSD generation. These settings are defined as UML Tagged Values in the OpenFMB model as shown below.

[image:] [image:]

Each data profile model references common classes and data types which are listed in a Common UML Package. This logical Common package is transformed into a separate XSD (Common.xsd) with its own namespace. Each data profile XSD imports the Common XSD as needed.

Therefore there are two types of namespaces defined for the OpenFMB PSMs.
· Common namespace
· Profile namespace

The Common namespace follows the convention of: http://openfmb.org/xsd/<version #>/Common

The profile namespace follows the similar convention: http://openfmb.org/xsd/<version #>/<Profile Name>. Here is an example: http://openfmb.org/xsd/2015/08v1/RecloserStatusRecloserEventProfile

The <version #> string in the namespace is used for version control. There are two types of update in terms of version control:

· Backward NOT Compatible:
· Namespace updated with new version #
· “version” attribute content updated in XSD header
· Backward Compatible:
· Namespace NOT updated
· “version” attribute content updated in XSD header

Note the “version” attribute in XSD header does not apply to XML validation against an XSD so its content change does not break validation against previous XSD version.

Here are two examples on version update:
· Version 2015/061 updated but not backward compatible
· Both targetNamespace and “version” attribute need to be updated

	<xs:schema ... targetNamespace="http://openfmb.org/xsd/2015/06v1/RecloserControl" version="1.0">
	<xs:annotation>
		<xs:documentation>
			Version 1.0 created 2015/06
		</xs:documentation>
	</xs:annotation>

Update to:
	<xs:schema ... targetNamespace="http://openfmb.org/xsd/2015/07v2/RecloserControl" version="2.0">
	<xs:annotation>
		<xs:documentation>
			Version 2.0 created 2015/07
		</xs:documentation>
	</xs:annotation>

· Version 2015/061 updated and backward compatible
· No change on targetNamespace but minor “version” attribute update

	<xs:schema ... targetNamespace="http://openfmb.org/xsd/2015/06v1/RecloserControl" version="1.0">
	<xs:annotation>
		<xs:documentation>
			Version 1.0 created 2015/06
		</xs:documentation>
	</xs:annotation>

Update to:
	<xs:schema ... targetNamespace="http://openfmb.org/xsd/2015/06v1/RecloserControl" version="1.1">
	<xs:annotation>
		<xs:documentation>
			Version 1.1 created 2015/07
		</xs:documentation>
	</xs:annotation>

Common XSD namespace change will always trigger namespace change in the individual profile XSDs

All OpenFMB XSDs follows a specific XSD style, Garden of Eden. In this style, all elements and types are defined at global level so they can be reused. Note a root element for a profile is explicitly defined in its own XSD to avoid confusion of root element instantiation.

All OpenFMB XSDs follow their Naming Design Rules (NDRs) which are summarized below:

· All defined at global level (both element & type)
· “Garden of Eden” style
· Element Sequence (not “xsd:all”)
· mRID listed at the top
· simpleType (alphabetically)
· complexType (alphabetically)
· Inherited attributes listed above native attributes

Sparx EA Code Engineering function is used to generate an XSD from a logical model (PIM). Other third party tool may be used but are not required. Here is a screen shot of the Sparx EA tool.
[image:]

[bookmark: _Toc435092635]RMQ.26.6.3.4 OpenFMB Profile IDL Platform Specific Approach
The Platform Specific Model (PSM) is technology dependent implementation of the PIM. Object Management Group Interface Description Language is an alternative PSM representation for OpenFMB. The IDL represents all defined items in its PIM including the classes, attributes, and associations.

Some vendors supply tools to directly translate from a PIM to corresponding IDL, or the IDL can be created manually.

[bookmark: _Toc435092636]REQ.26RMQ.26.6.4	OpenFMB Implementation Approach

Once installed, OpenFMB nodes are intended so that auditing, health monitoring, and all software and parameter updates are handled remotely via wired or wireless communications over-the-air through the OpenFMB Management Services Administration. This section describes an approach to achieving that goal.

[bookmark: _Toc435092637]REQ.26RMQ.26.6.4.1 OpenFMB Node Definition Approach

Depending upon its compute, memory, communications, and other characteristics a specific type of OpenFMB node will suitable for different roles.
For a Utility Service Provider that wants to standardize its node types, example node characteristics that it might consider include:
· Type and number of OpenFMB applications to run on the node
· Type and number of OpenFMB adapters to run on the node
· Local communications such as serial, USB, or others
· Inter-node communications such as Ethernet, Wi-Fi, cellular, RF, or others
· Integrated sensors
· Computational resources such as CPU, RAM, or others
· Form factors such as pole mount, enclosure, rack, virtual, or others
· Cost
· Other characteristics

[bookmark: _Toc435092638]REQ.26RMQ.26.6.4.2 OpenFMB Node Installation Approach

To install an OpenFMB node at a specific site, example tasks to consider include:
· In the OpenFMB Management Services Administration define that specific node’s properties, such as:
· Specific applications that will run on the node
· Specific adapters that will run on the node
· Relationship of associated devices and sensors to specific adapters and local communications protocols
· Grid topology location	Comment by .: Is this replaced by new item below?
· Electrical relationship to other grid devices in the circuit or position in the single-line diagram
· Geographic location
· Related identifiers used by other systems
· Identify such as digital certificates or other mechanisms
· OpenFMB software
· Operating system
· Hardware model and characteristics such as computational resources, local communications, inter-node communications, integrated sensors, form factor, or others
· Other properties
· In a configuration and test lab preparing the node for installation, example tasks to consider include:
· Verify hardware model and characteristics such as computational resources, local communications, inter-node communications, integrated sensors, form factor, or others
· Record in the OpenFMB Management Services Administration characteristics such as serial number, MAC address, or others
· Image node with base operating system, driver, and related software as well as OpenFMB Management Services Layer and related software required for over-the-air updates from the OpenFMB Management Services Administration
· Start node
· Establish node identity and signing mechanism
· Connect from the node to the OpenFMB Management Services Administration for other needed software and parameters
· Restart node in its normal operating mode to test and calibrate as appropriate the node’s operation.
· At the installation site, example tasks to consider include:
· Physical installation of node
· Establish and test local communications to associated devices and sensors, calibrating them as necessary
· Establish and test inter-node primary and alternative communications
· Verifying through the OpenFMB Management Services Administration’s node health monitoring that the node is fully functional

[bookmark: _Toc435092639]REQ.26RMQ.26.6.4.3 OpenFMB Node Update Approach

Since node manufacturers tend to have customized operating system versions, updates of operating system components and hardware device drivers are expected to be at manufacturer recommended times and through manufacturer recommend or provided methods.

For updating other node software including publish-subscribe middleware client software, example tasks to consider include:
· OpenFMB Management Services Administration defines software updates for certain type of OpenFMB nodes
· Node OpenFMB Management Services Layer connects with cloud remote OpenFMB Management Services Administration
· Cloud Remote OpenFMB Management Services Administration begins a control / request-response type download of update(s)
· At the scheduled or other appropriate time, for necessary processes and based upon dependencies, node OpenFMB Management Services Layer
· Stops new operations
· Waits for either operations to complete or timeout
· Gracefully shutdowns process
· Moves files to be updated from Current Configuration to Previous Configuration(s) location
· Expands update(s) to Current Configuration location
· Node OpenFMB Management Service Layer, based upon dependencies, starts or restarts necessary processes
· Node OpenFMB Management Service Layer checks that services are reading from and writing to topics while processing data. CPU and memory usage can also be verified.
· Node OpenFMB Management Service Layer connects with cloud remote Management Services Administration to report node health information.

[bookmark: _Toc435092640]REQ.26RMQ.26.7	OpenFMB Framework Technical Architecture

[bookmark: _Toc435092641]REQ.26RMQ.26.7.1	OpenFMB Profile Schemas

XML Schema Definition (XSD) is the platform specific representation of OpenFMB Data Profiles. XSD are available in machine readable format.	Comment by .: Need link to NAESB machine readable XSD

Based on the PIM model structure in UML, the OpenFMB XSD can be generated as a single XSD or individual profile XSDs. For this release, a single namespace XSD is provided.

[bookmark: _Toc435092642]REQ.26RMQ.26.7.2	OpenFMB Publish-Subscribe Middleware Reference Implementation

[bookmark: _Toc435092643]REQ.26RMQ.26.7.2.1 OpenFMB Publish-Subscribe Middleware Introduction

OpenFMB utilizes publish – subscribe middleware to effectively deliver information from one or more publishing sources to a potentially large number of subscribers in various areas that are interested in the information.

An OpenFMB Message Payload consists of an OpenFMB Data Profile instance in a platform specific format. Each OpenFMB Message Topic is a stream of OpenFMB Message Payload instances of one specific type sent from message publishers to message subscribers.

An OpenFMB Message Topic name is derived from the name of the data profile instances the topic transports and its enclosing UML package group. These topic names are constructed according to the practices of the specific publish-subscribed middleware that is being used and according to the following general format:
· Literal “OpenFMB” without quotes
· Middleware specific delimiter
· ProfileProfile Module name which terminates with “Module”
· without the terminating “ControlProfile”, “EventProfile”, or “ReadingProfile”
· Literal “Module” without quotes
· Middleware specific delimiter
· Profile name which terminates with “Profile”

[bookmark: _Toc435092644]REQ.26RMQ.26.7.2.2 OpenFMB Data-Centric Reference Implementation

Data-centric middleware provides publishers and subscribers a shared data space with a shared data model. The data space consists of topics. Each topic has a topic type specifying a data structure containing data elements from the data model and usually a key to uniquely identify the data object. Each key value defines a topic instance, and over time a topic instance can have a series of topic samples.

Data-centric middleware allows participants to directly access shared information in a community of interest. Participants can:
· Publish data into topics in a data space by providing values for distinct, strongly typed data fields
· Subscribe to data from topics in a data space and access the strongly values of distinct data fields
· Come and go (join and leave) at any time
· Asynchronously access data even if a late joiner
· Selectively receive data
· Select Qualities of Service (QoS) to reflect data transfer and access characteristics

Data Distribution Service

The Object Management Group’s Data Distribution Service (DDS) is a commonly used peer-to-peer data-centric middleware. DDS has defined both a binary wire format protocol for interoperability between different DDS implementations as well as language bindings to C++ and Java for source code portability between different DDS implementations.

Roles
With a data-centric model DDS is useful for maintaining distributed state knowledge.

Topic Names
IDL identifiers start with an alphabetic character which may only be followed by alphanumeric or the underscore “_” characters. Following the approach for platform specific topic names, the format for OpenFMB DDS topic names is:
· Literal “OpenFMB” without quotes
· Literal “_” without quotes
· Profile Profile Module name which terminates with “Module”
· without the terminating “ControlProfile”, “EventProfile”, or “ReadingProfile”
· Literal “Module” without quotes
· Literal “_” without quotes
· Profile name which terminates with “Profile”
For example: OpenFMB_BatteryModule_BatteryReadingProfile
 Topic names are available in machine readable format.
Publishers and Subscribers associated with all Topics use the default Partition.

Quality of Service (QoS) Parameters
Appropriate Quality of Service parameters have been defined for different interaction patterns utilized in the sequence diagrams. Parameters for each interaction pattern are defined using combinations of reusable QoS profiles. . QoS parameters are available in machine readable format and are summarized as follows:
Default DDS Quality of Service values are specified in the table on page 92, Section 2.2.3 of the DDS specification. In appendix B.2.3, Appropriate Quality of Service parameters at the platform independent level have been defined for different interaction patterns utilized in the sequence diagrams. Parameters for each interaction pattern are defined using combinations of reusable QoS profiles. For DDS, these can be mapped to platform-specific QoS parameters.
For interoperability between participating components, the so-called RxO (Request-Offered) QoS settings are important because they require to be selected consistently on a system-wide scale. The relevant RxO QoS settings with non-default values as well as lifespan QoS settings are summarized as follows for the different profiles:

Reading Interaction Pattern
Data distributed with DDS under this pattern has the following DDS QoS settings attached:

	DDS QoS policy name
	Policy value applied

	RELIABILITY
	BEST_EFFORT

	DURABILITY
	VOLATILE

	LATENCY_BUDGET
	500 msec

Control Interaction Pattern
Data distributed with DDS under this pattern has the following DDS QoS settings attached:

	DDS QoS policy name
	Policy value applied

	RELIABILITY
	RELIABLE

	DURABILITY
	VOLATILE

	LATENCY_BUDGET
	50 msec

	LIFESPAN
	5 sec

Event Interaction Pattern
Four different kinds of Event Interaction Patterns have been defined. Each of these kinds has similar QoS settings, with the exception of the LATENCY_BUDGET policy:

	DDS QoS policy name
	Policy value applied

	RELIABILITY
	RELIABLE

	DURABILITY
	TRANSIENT

	LATENCY_BUDGET
	Protection Event: 5 msec
Alarm Event: 50 msec
Information Event: 5 sec
Work Flow Event: 50 sec

	LIFESPAN
	unlimited

Vendor interoperability
In order to assure wire-level interoperability between different components, DDS implementations used are required to comply with the OMG DDS-RTPS wire-protocol specification.
Note that the QoS setting of transient durability is currently not covered in the DDS-RTPS specification and will therefore require additional attention.

Optional fields
Data profiles containing optional attributes that may or may not be present at the publishing application’s discretion are supported by DDS as part of the OMG DDS-XTYPES specification. However, not all DDS implementations support this feature.

Message Payload
For DDS, Interface Description Language (IDL) is the platform specific representation of OpenFMB Data Profiles, which are expressed in a programming-language neutrala binary wire format. Programming-specific data-types and publish-subscribe APIs are generated from the IDL using tools provided by DDS vendors.IDL may be generated from OpenFMB Data Profile UML with vendor specific or third party tools. IDL are available in machine readable format.With DDS, the data-types include so-called key definitions that uniquely identify the different data-objects. The identification of key attributes is part of the PIM UML model.

Security
The Object Management Group DDS-SECURITY draft standard adds information assurance concepts to the DDS standard, while maintaining interoperability between vendors. Mechanisms addressed are authentication, access control, encryption, message authentication, digital signing, logging and data tagging.
DDS offers a security option in beta.

[bookmark: _Toc435092645]REQ.26RMQ.26.7.2.3 OpenFMB Message Orientated Middleware Reference Implementation

Message Orientated Middleware (MOM) focuses on loose coupling through asynchronous delivery of many-to-many publish-subscribe messages and/or one-to-one queue messages. The infrastructure can be either peer-to-peer or broker-based. To further promote loose coupling, message payloads are commonly lightweight event-driven data independent of either the sender’s or receiver’s internal data model, such as the classic stock market ticker example.

Advanced Message Queuing Protocol

Advanced Message Queuing Protocol (AMQP) version 1.x is a broker-based protocol. Common versions in use include 0-9-1 and 0-10. AMQP has defined a binary wire format protocol for interoperability between different AMQP implementations and is in the process of defining a JMS compatible Java language bindings for source code portability between different AMQP implementations.

Publish-subscribe is handled through AMQP routers.

Message payload may be structured, self-describing data using the AMQP type system or payloads may be text or binary formats chosen by the sending application.
Roles
With a centralized broker AMQP can be used with a publish-subscribe interaction for functions such as health monitoring and alerting as well as with a request-response interaction for functions such as distributing configuration and other updates.

Topic Names
Following the approach for platform specific topic names, the format for OpenFMB AMQP topic names is:
· Literal “OpenFMB” without quotes
· Literal “/” without quotes
· Profile Module name which terminates with “Module”
· Literal “/” without quotes
· Profile name which terminates with “Profile”
For example: OpenFMB/BatteryModule/BatteryReadingProfile
AMQP…
Topic names are available in machine readable format.

Quality of Service (QoS) Parameters
AMQP…
QoS parameters are available in machine readable format and are summarized as follows:
AMQP Publish-Subscribe
Subscribers maintain an AMQP exchange with endpoints for publishers. These exchanges will be of exchange type topic, so that routing key formats for each exchange data type may be chosen that allow filtering based on specific data fields. Subscribers create anonymous AMQP subscription queues and bind them to the information exchanges with the desired routing key. If the AMQP broker does not support anonymous queues directly, a UUID or the AMQP channel/session identifier may be used to ensure uniqueness. It is recommended subscription queues use the following parameters to be true: auto-delete and non-durable. Publishers are configured with the names of exchanges of interest.

AMQP Request-Response
The request-response service creates an AMQP exchange that representing the request-response service. An AMQP exchange is designated as the logical endpoint for request messages, and a queue is declared with a well-known name and bound exclusively to the exchange to store requests for handling. The service then consumes requests from the queue, removing the message so it is not handled twice. The request queue is configured with the parameter auto-delete to be true.

Request-response clients receive responses to service requests by declaring an anonymous queue and providing in the request the name of the queue in the AMQP reply-to header and also a correlation-id header which allows them to correlate responses to the original request. Service handlers then respond by copying the correlation-id header to the response message and addressing the message to the AMQP direct exchange with the reply-to address in order to route directly to the response queue.

Message Payload
Message payload may be structured, self-describing data using the AMQP type system or payloads may be text or binary formats chosen by the sending application.

Security
AMQP has bindings to TLS and SASL. Use of SASL permits use of access control lists for AMQP brokers.

Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) is a store-and-forward broker-based publish-subscribe wire format protocol for devices constrained by limited computational resources or limited bandwidth. The standard wire format provides interoperability between different MQTT implementations. MQTT is agnostic to message payload, not defining any payload structure.

Programs publishing or subscribing over MQTT use implementation specific client libraries to connect to a MQTT server. Using wildcards subscribers have the option to subscribe to multiple topics at once.

Roles
With lightweight client libraries and a centralized broker, MQTT is commonly used for consolidating status from many sites.

Topic Names
MQTT uses “/” as its topic delimiter. Following the approach for platform specific topic names, the format for OpenFMB MQTT topic names is:
· Literal “OpenFMB” without quotes
· Literal “/” without quotes
· ProfileProfile Module name without the terminating “ControlProfile”, “EventProfile”, or “ReadingProfile”which terminates with “Module”
· Literal “Module” without quotes
· Literal “/” without quotes
· Profile name which terminates with “Profile”
For example: OpenFMB/BatteryModule/BatteryReadingProfile permits MQTT wildcard subscriptions. If a really bandwidth constrained MQTT systems needs to save a few bytes, it could use a short UTF-8 encoded hash of the full MQTT topic name.

Quality of Service (QoS) Parameters
As its name conveys, MQTT is about telemetry, and especially on constrained devices without the resources for preserving state though system failures and for attempting multiple message delivery retries, MQTT most closely matches the OpenFMB at most once reading interaction pattern, although with relaxation of persistence on constrained devices, MQTT could also handle OpenFMB event interaction patterns. With its focus on telemetry MQTT does not provide an request-reply message exchange pattern. However, the general functionality of the OpenFMB control interaction pattern might be achieved through a combination of back-to-back at most once interactions: the first interaction being a request with a timeout, and the second being a reading with the state after the request.

Quality of Service parameters for an at most once interaction on a constrained device:
· MQTT PUBLISH Control packet
· MQTT Fixed Header
· Control Packet Type = 3 (PUBLISH)
· DUP flag = 0 (not a redelivery)
· QoS level = 0 (at most once delivery)
· RETAIN = 0 or 1 for the server to retain values for late joiners
· Remaining message length, which equals length of Variable Header plus length of Payload.
· MQTT Variable Header
· UTF-8 encoded topic name string
· No packet identifier
· MQTT Payload
· Binary payload such a protobuf or text payload such as XML or JSON

· MQTT SUBSCRIBE Control packet
· MQTT Fixed Header
· Control Packet Type = 8 (SUBSCRIBE)
· Bit 3 = 0 (reserved fixed value)
· Bit 2 = 0 (reserved fixed value)
· Bit 1 = 1 (reserved fixed value)
· Bit 0 = 0 (reserved fixed value)
· Remaining message length, which equals length of Variable Header plus length of Payload.
· MQTT Variable Header
· UTF-8 encoded topic name string
· Unused packet identifier 16-bit non-zero number
· MQTT Payload
· One or more specific or wildcard topics with each Quality of Service set to 0

Security
MQTT supports server authentication and may support authorization of clients through user id and password combinations. A server may also support TLS. Self-signed digital certificates with passwords are common.

[bookmark: _Toc432774206][bookmark: _Toc435092646]Appendices
[bookmark: _Toc432774207]
[bookmark: _Toc435092647]Appendix A – OpenFMB Framework Relationship to Other Smart Grid Architectures
[bookmark: _Toc432774208][bookmark: _Toc435092648]A.1 Relationship to the SGAM Architecture
Figure A-1 shows the Smart Grid Architecture Model (SGAM) which was developed by the European mandate M.490 and is now harmonized with the IEC TC57 Reference Model for Power System Management and Associated Information Exchange. The SGAM is a template for architects to follow while building aspects of a Smart Grid architecture, regardless of an architect’s specialty (such as in areas of transmission, distribution, IT, back office, communications, asset management, and grid planning). The model is a three dimensional depiction of the levels of Interoperability on the z-axis, for different domains on the x-axis, and for different zones on the y-axis.

Figure A-1 also shows how the OpenFMB relates to the SGAM. On the z (interoperability) axis, the information, communication, and component layers are included; on the x (domain) axis, the distribution, DER and customer premise are included; and on the y (zones) axis, the process, field, station and operations zones are included. This is shown with a red oval.
[image:]

Figure A-1 Smart Grid Architecture Model (SGAM) and OpenFMB

[bookmark: _Toc432774209][bookmark: _Toc435092649]A.2 Relationship to the GWAC Stack
Figure A-2 shows how the OpenFMB addresses multiple categories of the Grid Wise Architecture Council Interoperability Context Setting Diagram (also known as the GWAC stack) necessary for peer-to-peer exchange of lightweight messages. These categories range from GWAC Stack Category 2 (mechanisms to exchange messages between multiple systems across a variety of networks) through GWAC Stack Category 5 (specific business process interactions). As shown by the red rectangle in Figure A-2, OpenFMB addresses cross-cutting issues as well.
[image:]

Figure A-2 Relationship of OpenFMB to GWAC Stack

The definitions of the relevant categories in the GWAC stack above are shown below (Note: Category 1 is also included to better elucidate the boundary between Category 1 and Category 2):

· Category 1 Basic Connectivity: Mechanism to Establish Physical and Logical Connections of Systems. Basic Connectivity includes the physical and data link layers of the seven-level OSI model. These layers provide functions such as transference of data between network nodes and correction of errors. Examples include Ethernet and WiFi.
· Category 2 Network Interoperability: Exchange Messages between Systems across a Variety of Networks. This category includes the network, transport, session, and (sometimes) the application layers of the seven-level OSI model. These layers provide functions such as assurance of complete data transfer and management of message delivery order. Examples include TCP and UDP.
· Category 3 Syntactic Interoperability: Understanding of Data Structure in Messages Exchanged between Systems. Syntactic Interoperability includes the application and presentation layers of the seven-level OSI model. This layer provides functions such as message content structure and message exchange patterns. Examples include SOAP and SNMP.
· Category 4 Semantic Understanding: Understanding of the Concepts Contained in the Message Data Structures Groups have come together to establish shared semantic understanding within an area of interest or business domain. Examples include object models based on XML schema definition (XSD), OPC Unified Architecture (a manufacturing automation standard), and IEC 61850 substation automation standard.
· Category 5 Business Context: Relevant Business Knowledge that Applies Semantics with Process Workflow UN/CEFACT ebXML Core Components specification and the W3C provide examples of work that is bridging semantic understanding with business procedures.

[bookmark: _Toc432774210][bookmark: _Toc435092650]Appendix B Example OpenFMB Reference Implementation

This appendix describes an example OpenFMB implementation that was based on the OpenFMB framework reference architecture, framework approach, and technical architecture described in the main body of this specification. The main goal of this example implementation was to validate and demonstrate the OpenFMB concepts and business practices.

This appendix provides the use cases, the Platform Independent Model (PIM) derived from the use cases, and the Platform Specific Model (PSM), which includes both XML Schema Definition (XSD) profiles and Interface Definition Language (IDL) profiles for message exchange.

[bookmark: _Toc432774211][bookmark: _Toc435092651]B.1 Sample Use Cases
OpenFMB is intended to provide an architecture that can be configured to support a variety of business use cases that require a highly performant, secure field bus to interconnect field devices in peer-to-peer networks as well as existing field device to central control centers.

The initial use cases chosen to drive the development of OpenFMB are focused on the operation of a microgrid, specifically microgrid optimization, unscheduled islanding transition, and island-to-grid connected transition.

Figure B-1 Sample OpenFMB Implementation 	Comment by .: Perhaps variation of NREL diagram. Mr. Waight will send the diagram to Mr. Saxton.	Comment by .: Figure B-1 shows the OpenFMB Nodes to support the microgrid use cases. Nodes are located at the PCC, MGMS, Battery, PV, and Load.

The microgrid use cases are only a few of many possible applications that are expected to be supported by OpenFMB. Individual Utility Service Providers will identify their own high priority use cases.

For the three use cases, the use case narratives are in the following three sub-sections. The full use cases are available electronically.	Comment by .: Do use case diagrams need updates?	Comment by .: Need a link or else full use cases here.

[bookmark: _Toc432774212]

[bookmark: _Toc435092652]B.1.1 Microgrid Optimization Use Case Narrative

	Narrative of Use Case

	Short description

	Microgrid optimization refers to creating optimal resource schedules, and updating and following these schedules when the micro grid is connect to a larger grid or when it is islanded. Note that the schedules for each state (connected or islanded) will be different. When the energy resources within the microgrid involve renewables such as wind and solar, a significant factor to drive the schedules will be the weather forecast. Other significant factors for microgrid schedules will be utility grid optimization requirements including that of demand response.

While this use cases describes the interaction between Microgrid Optimizer and microgrid resources, the same architecture and processes can support more of a hierarchical control scheme, including a utility DMS.

	Complete description

	This use case deals with normal state daily operations of a microgrid, both grid connected and islanded. When grid connected, an initial set of interchange schedules is set up for the next operating day. When islanded, these interchange schedules are set to zero. Throughout the operating day, resource schedules are updated for the remainder of the operating day. When islanded, resource schedules, only, are considered as optimization variables. When the microgrid is connected to the main grid, flows to the external grid (interchange schedules) are considered to be fixed constraints in the next k intervals, and optimization variables in the following j intervals, with k, and j as selectable parameters.

There are two parts to this use case: Day-Ahead and Intra-day. Within each part there are options.

Day-Ahead Scheduling

Several steps are followed:
1. Loads are forecasted for the day-ahead using load forecasting.
2. Renewable power resource (solar, wind) schedules for the day-ahed are forecasted, using renewable power forecasting.
3. Microgrid Optimizer optimizes the day-ahead plan and comes up with planned schedules for flows on the connection to the grid, and microgrid resource operating schedules for each interval of the day-ahead.
4. Microgrid Optimizer sends the optimal interchange schedule to its higer level controller (utility control center / DMS) or alternatively, go to 4a

4a Microgrid higher level controller (a utility DMS, for example) publishes its required day ahead interchange schedule (in the case of demand response events, for example) to Microgrid Optimizer

3b Microgrid optimizer updates other resource schedules to follow interchange schedule received for day ahead

Intra-day Dispatching and Scheduling

1. Loads are forecasted for the remainder of the day using load forecasting
2. Renewable Power (solar, wind) schedules are forecasted for the remainder of the operating day, using renewable power forecasting
3. Microgrid Optimizer optimizes the remainder of the operating day and adjusts planned schedules for flows on the connection to the grid, and resource operating schedules for the remander of the operating day or alternatively go to 3a
4. Microgrid Optimizer sends schedules to its higer level controller (utility control center / DMS)

3a. Microgrid higher level controller (a utility DMS, for example) publishes an updated required interchange schedule (in the case of demand response events, for example) to Microgrid Optimizer
3b Throughout operating day, the microgrid optimizer updates the resource schedules for the remainder of the operating day to accommodate the updated interchange scheudle.

Microgrid Optimizer also has the following controls:
Selectable Constraints:
 1) No power export
 2) No power imported at Peak
 3) Integrate weather forecasting
 4) Net zero mode (over 1 day)
Modes:
 1) Maximize renewable, green mode (produce all you can from DR)
 2) Best economy TOU, understand least cost power
 3) Blended objective function, e.g. 50 / 50
The SGIP demo will focus on the options within this use case, where the interchange schedule is determined by the Microgrid Optimizer.

[bookmark: _Toc432774213]

[bookmark: _Toc435092653]B.1.2 Unscheduled Islanding Transition Use Case Narrative

	Narrative of Use Case

	Short description

	
The transition from Grid-Connected to Islanded Microgrid which we will refer to as unscheduled islanding

	Complete description

	
This use case deals with the unscheduled islanding transition behaviour from grid-connected mode to an islanded microgrid, which consists of two scenarios. In the first scenario, a confirmed grid outage is detected by the island recloser (or switch) at the point of common coupling (PCC) to open and start the unscheduled islanding transition . In the second scenario, a triggering event is detected by the monitoring platform to initiate the island recloser (or switch) at the PCC to open and start the unscheduled islanding transition, or the utility operation center receives the triggering event(s) and work with Grid Operator to use DMS/SCADA to open the recloser. Upon opening of the recloser at the PCC, the battery inverter receives the recloser open status and switches from current-source “Sc” mode to voltage-source “Sv” mode. Additionally, the microgrid optimizer and the DMS/SCADA receive the recloser open status to update their models.

There are two scenarios to this use case: Grid Outage and Triggering Event.

Grid Outage causing unscheduled Island

1. Island recloser detects grid outage and opens switch at PCC
2. Island recloser publishes its unsolicited status (open)

Triggering Event causing unscheduled Island

1. Local monitoring platform detects an event and triggers a unscheduled island

2. Local monitoring platform detects triggering event(s). As an example the triggering event could be a a ballistic sensor detecting gun shots and/or security software agent inspects IP network traffic/packets and detects abnormal activities.
3. monitoring platform publishes the triggering event message
4. Island recloser receives triggering event message from monitoring platform
5. Island recloser does one of the two things:
· Island recloser opens switch at the PCC based upon a predefined set of business rules
· Island recloser determines insufficient data based on eventdata to “open”, and publishes the “security event – insufficient data” message
6. Utility Monitoring Platform receives the event message
7. Utility Operations Operator processes this information along with other “ events” and works with Utility Grid Operator who uses DMS/SCADA to control the distribution grid.
8. Utility Grid Operator determines sufficient information about the events and the need to isolate the micrigrid, and either instructs the SCADA system to “open” the recloser or not based on the evaluation.
9. Island recloser publishes its readings and status (open)

The Grid-connected to Island Transition performs the following functions:

 1) Trigger Battery Inverter to switch to voltage source mode
 2) Notify microgrid optimizer of status
 3) Notify SCADA of status

[bookmark: _Toc432774214]

[bookmark: _Toc435092654]B.1.3 Island to Grid Connected Transition Case Narrative

	Narrative of Use Case

	Short description

	
The transition from Islanded to Grid-Connected Microgrid (Resynchronization and Reconnection).

	Complete description

	
This use case deals with the resynchronization and reconnection transition behavior from islanded mode to grid-connected mode of the microgrid. In this scenario, power is restored to the grid and is detected by the island recloser (or switch) at the point of common coupling (PCC); this starts the resynchronization / reconnection (synch-check) activity, only if the DMS provides a confirmation status to the Optimizer of the restored power grid and also granting permission to the island recloser by removing its control block. The balancing of the grid side and island side voltage and frequency are managed by the optimizer in conjunction with the battery inverters. Once the recloser synch-check function criteria is met, the Microgrid is resynchronized and reconnected to the grid. Immediately, the Optimizer messages the battery inverters to switch from voltage-source “Sv” to current-source “Sc” mode. Additionally, the microgrid optimizer and the Utility SCADA receive the recloser close status to update their models.

There is one scenario to this use case: Grid Power Restored.

Grid Power Restored

Several steps are followed:
1. Island recloser detects return of power to the grid at PCC and publishes readings and status to Optimizer and DMS.
2. DMS sends confirmation status to Optimizer and also sends remove control block command to island recloser.
3. Optimizer receives readings and status of the island recloser and the confirmation status from DMS and begins the grid resynchronization and reconnection process
4. Optimizer publishes the synch-check command to the Island recloser and receives periodic statuses and readings from the solar inverter, batter inverter, and meters.
5. Island recloser receives the synch-check command and initiates the resynch process
6. Optimizer manages all battery inverters to match grid-side voltage and frequency by publishing desired setpoints
7. Battery inverters publish readings and status to the Optimizer
8. Optimizer receives Battery inverter readings and status and adjusts setpoints to match grid
9. Island recloser resynchs and publishes readings and status to the Optimizer and Utility SCADA
10. Optimizer receives Island recloser status message
11. Optimizer publishes battery inverter change setting to current-source “Sc” mode
12. Battery iniverter receives command and switches to current-source “Sc” mode
13. Utility SCADA receives island recloser status message

The Microgrid Island to Grid-Connected Transition performs the following functions:

 1) Trigger Battery Inverter to switch to current-source “Sc” mode
 2) Notify microgrid optimizer and DMS of status
 3) Controls battery inverter settings to balance voltage and frequency of island to grid
 4) Ensure DMS provides permission
 5) Optimizer activates recloser synch-check function

B.2 Platform Independent Model (PIM)
[bookmark: _Toc432774215][bookmark: _Toc435092655]B.2.1 PIM Overview

The following diagram provides an overview of the key classes in their relevant areas such as Status & Event, Readings & Information, and Control.

[image:]

These classes are used to build data profiles as described in the framework. Each profile is organized by a container. All containers are inherited from a common Container class as shown in the diagram below. Note the common Container has two attributes: messageID logicalDeviceID and timestamp which are used for logical device message ID and the timestamp message is issued.
[image:]

[bookmark: _Toc432774216][bookmark: _Toc435092656]B.2.2 PIM Data profiles

Individual data profiles are summarized in the table below with Profile Name, Profile Diagram, and Key Requirements.

	Profile Name
	Profile Diagram
	Key Requirements

	Recloser ControlProfile
	[image:] [image:]
	· control command (open or sync - msg from Optimizer)
 - Note no direct "close" command since a Recloser has to sync V/Hz both side before physically closed
· device identifier

	RecloserEventProfile
	[image:] [image:]
	· mRID
· timeStamp
· normalOpen
· isLockedOut
· discrete value (isOpen)
· quality

	RecloserReadingProfile
	[image:] [image:]
	Reading
· mRID
· timestamp
· value (analog / discrete)
· flowDirection
· multiplier (M)
· name
· phases
· unit (W)
· measurement / terminal (for grid and microgrid sides)
· quality

Status
· mRID
· timeStamp
· normalOpen
· isLockedOut
· discrete value (isOpen)
· quality

	BatteryControlProfile
	[image:] [image:]
	· mRID
· timeStamp
· eventOrAction – Mode Control
· type
· controlType – SetPoint Control
· unitMultiplier
· unitSymbol
· value

	BatteryEventProfile
	[image:] [image:]
	· mRID
· timestamp
· isCharging
· isConnected
· Sv or Sc mode
· quality

	BatteryReadingProfile
	[image:] [image:]
	Reading
· reading mRID
· device identifier (Resource mRID)
· measurement:
 - % charge (SoC)
 - V/Hz - phase
 - W / VAR (power factor)
 - Wh
 - Varh
· timestamp

Status
· mRID
· timestamp
· isCharging
· isConnected
· Sv or Sc mode
· quality

	SolarCapabilityProfile
	[image:] [image:]
	· resource mRID
· analog mRIDs
· MW High Limit
· MW Low Limit
· voltage
· quality
· timestamp

	SolarControlProfile
	[image:] [image:]
	· destination device identifier (mRID)
· source mRID that sends out the control command
· off/run
· set point - kW
· set point - kVAR
· timeStamp
· controlType – SetPoint Control --
· unitMultiplier
· unitSymbol
· value

	SolarEventProfile
	[image:] [image:]
	· status (offline or normal)
· fault condition (fault (fault code) or normal)
· device Identifier
· timestamp
· isConnected

	SolarForecastProfile
	[image:] [image:]
	

	SolarReadingProfile
	[image:] [image:]
	Reading
· device Identifier (Resource mRID)
· source ID
· kW, KVAR, PF, V, Hz, 3 Phase, KWh, KVARh
· timestamp

Status
· status (offline or normal)
· fault condition (fault (fault code) or normal)
· device Identifier
· timestamp
· isConnected

	ResourceReadingProfile
	[image:] [image:]
	· reading value
· reading unit (kW, kVar, kVA, V/Hz) per phase
· quality
· meter ID
· associated PSR ID

	ResourceStatusProfile
	[image:]
	· resource status

	InterchangeScheduleProfile
	[image:][image:]
	Day-Ahead:
· Schedule (e.g. day-ahead desired schedule as a contract between MG and utility):
 - Setpoint / kW (+-: import/export)
 - Intervals
· Resource ID for PCC

Hour-Ahead:
· schedule (intra-day desired schedule)
 - MW value
 - Time interval
· version (hourly versions)
· mode (fixed or variable)
· schedule created Date/Time
· ID

	LoadControlProfile
	[image:][image:]
	· setpoint /kW (discrete or analog)
· load ID
· timestamp

	LoadForecastProfile
	[image:][image:]
	· schedule
 - MW value
 - time Interval
· version Date/Time
· schedule mRID
· associated load

	LoadReadingProfile
	[image:][image:]
	· load mRID
· current MW
· current MVAR
· current power factor
· current Voltage
· current Operating Limits
· quality
· date/time

	LoadStatusProfile
	[image:]
	· load status

	GenerationControlProfile
	[image:][image:]
	· resource mRID
· analog mRID
· analog Value
· discrete Value
· date/Time

	GenerationEventProfile
	[image:][image:]
	· auto control on/off
· generator ID (CIM GeneratingUnit/mRID)
· quality

	GenerationForecastProfile
	[image:][image:]
	· schedule
 - MW value
 - time Interval
· version
· version Date/Time
· resource ID

	GenerationReadingProfile
	[image:][image:]
	· generator mRID
· current MW
· current MVAR
· current power factor
· current Voltage
· current Operating Limits
· quality
· date/time

	SecurityEventProfile
	[image:][image:]
	· timestamp
· value
· event name
· event type
· event description
· event severity

	WeatherDataProfile
	[image:]
	· temperature
· wind speed
· wind direction
· humidity
· sun radiation

[bookmark: _Toc432774217][bookmark: _Toc435092657]B.2.3 PIM Interaction Patterns
Interaction Patterns are derived from use cases. For each interaction between actors, repeated portions of sequence diagrams and the appropriate qualities of service for those portions are identified.

Common portions of sequence diagrams are extracted to create shared sequence diagram fragments, which are called OpenFMB Interaction Patterns. These shared sequence diagram fragments are then referenced from the original sequence diagrams as shown in the recloser reading sequence diagram below.

[image:]

Similarly, the qualities of service for each common portion are categorized, and groups sharing the same or similar qualities of service are specified as a Quality of Service (QoS) Non-Functional Requirement in the UML. Often a QoS requirement has a fixed value for each type of QoS characteristic. In other cases, slight differences between use cases can be accommodated by specifying a default value for a QoS characteristic.

[bookmark: _Toc432774218][bookmark: _Toc435092658]B.2.3.1 Reading Interaction Pattern
The Reading Interaction Pattern is used by “fire-and-forget” type interactions where new information quickly replaces previous values. The associated qualities of service are:
· Best effort transport reliability
· N/A lifespan
· Volatile durability
· 2,000 ms default publishing rate
· 500 ms latency budget

[image:]

[bookmark: _Toc432774219][bookmark: _Toc435092659]B.2.3.2 Control Interaction Pattern
The Control Interaction Pattern is used where the Control Issuer wants to request an action by the Control Receiver. The associated qualities of service are:
· Reliable reliability
· 5,000 ms lifespan
· Volatile durability
· N/A publishing rate
· 50 ms latency budget

[image:]

[bookmark: _Toc432774220][bookmark: _Toc435092660]B.2.3.3 Event Interaction Pattern
The Event Interaction Pattern is used for notification of asynchronous events. The associated qualities of service depend upon the type of event. All events share the following qualities of service:
· Reliable reliability
· 1M ms lifespan
· Persistent durability
· N/A publishing rate
However, the latency budget varies depending upon the event type:
· Protection Event 5 ms latency budget
· Alarm Event 50 ms latency budget
· Information Event 5,000 ms latency budget
· Work Flow Event 50,000 ms latency budget

[image:]

[bookmark: _Toc432774221][bookmark: _Toc435092661]B.3 Platform Specific Model
[bookmark: _Toc432774222]B.3.1 Interface Description Language (IDL) Profiles
[bookmark: _Toc432774223]
[bookmark: _Toc435092662]B.3.12 XML Schema Definition (XSD) Profiles	Comment by .: Confirm that the XSD will be printed here. Also need a link to NAESB machine readable versions. .

[bookmark: _Toc435092663]B.3.2 Interface Description Language (IDL) Profiles	Comment by .: Need to print IDL here or a link to the machine readable versions.

[bookmark: _Toc435092664]B.3.3 Example Payload Instance	Comment by .: If this is desired, Shawn Hu could create a payload example from his XSD.

[bookmark: _Toc432774224][bookmark: _Toc435092665]Appendix C Examples of OpenFMB Application/Adapter Functions

Table C-1 below is a list of possible applications organized by category. This classification is helpful in understanding operational capabilities OpenFMB nodes may support.	Comment by Elizabeth Mallett: In the future, some of these applications may be distributed over multiple nodes.
	
Category
	Application/Adapter Function

	Basic measurement and event data
	Status Measurement

	
	Power revenue measurement

	
	Operational Power Measurement

	
	Power Quality Measurement

	
	Other Analog Measurement

	
	Measurement and Status History

	Business functions
	Tagging/Maintenance

	
	Generation Forecasting

	
	Load Forecasting

	
	Weather Forecasting

	
	Provide/Consume Cost info

	
	Provide/Consume Pricing

	
	Settlement

	
	Scheduling

	
	Ancillary Services

	
	Electric Network Modeling

	
	Calculate Network Topology

	
	Calculate Power Flow

	
	Volt/Var/Watt Optimization

	
	Economic Optimization

	
	Contingency Analysis

	
	Islanding/Reconnecting

	
	Black Starting

	
	Simulation

	
	Testing

	Control
	DC/AC conversion

	
	AC/AC conversion

	
	AC/DC conversion

	
	Storage management

	
	Real power control

	
	Reactive power control

	
	Switch control

	
	Load control

	
	Load Shedding

	
	Alarming

	
	Protection

Table C-1 OpenFMB Node Application Examples
Page 51

image77.jpg
sd Event Pattern

Triggered by

Event

Event Pusliner Node

7

Puslisner
I

:

Event Receiver FIUE

Event Publiser FIE
1

Event Receiver Node

%

Event Recsiver

Toop Trans

saction

Unti A

ceivech

<Event> esssge Topicq,

Message
Perisen

[

loop Transaction

ot A ceted
L e tessge Tov

loop Transaction

Uil Adk Received

| <Event Message Topic)

image1.png
Any Medium

Proprietary
Network

36, LTE, Wi-Fi,
Fiber, Ethernet,
RF ISM, or PLC

2
S
2

sng 05195 osudIoiug

UTILITY
CENTRAL
OFFICE

UTILITY
CENTRAL
OFFICE

Current State: Message Bus at Data Center Future State: Message Bus in Field and Data Center

image2.png
OpenFMB Interface Layer

OpenFMB Interface Layer

Other

mart

DDS

image3.png
Layered Security Approaches

Adapters
Applications (DNP3, Modbus, IEC 61850 ACSI, C12,
CoAP, XMPP, Other)

(Data Profiles, Configurations, Interaction Patterns, Middleware Interface and Security)

Other Publish-
AMQP DDS mart Subscribe
Middleware Clients

\
\
\
\
\
\
\
\
\
\
\
\
\
|

OpenFMB Interface Layer }
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

image4.png
Layered Security Architecture

Applications

Adapters

(DNP3, Modbus, IEC 61850 ACSI, C12,
CoAP, XMPP, Native, Other)

OpenFMB Interface Layer

(Data Profiles, Configurations, Interaction P

atterns, Middleware Interface and Security)

AMQP

DDS

mQTT

Other Publish-
Subscribe
Middleware Clients

image5.png
Layered Security Approaches

Middleware Configurations.

iamasermentservice Pl

g servees gl

[|

OpenFMB Management Services Layer
(Plug-ins, Updates, Installation, Health Monitoring, Alerting, Auditing)

OpenFMB Interface Layer

(Data Profiles, Configurations, Interaction Patterns, Middleware Interface and Security)

AMQP

DDS

mQrT

Other Publish-
Subscribe
Middleware Clients

Middleware
Broker

Publish-Subscribe
Middleware
Client

OpenFMB Management Services

Administration

image6.png
Middleware Configurations.

Layered Security Architecture

iamasermentservies gl [Wamsgemers Servees Pgil] (IWamsgemen Sevces PGl

OpenFMB Management Services Layer
(Plug-ins, Updates, Installation, Health Monitoring, Alerting, Auditing)

OpenFMB Interface Layer
(Data Profiles, Configurations, Interaction Patterns, Middleware Interface and Security)

Other Publish-
AMQP DDS maQrT Subscribe
Middleware Clients

Publish-Subscribe
Middleware
Client

Middleware
Broker

OpenFMB Management Services
Administration

image7.png
‘OpenMB Management Servces Layer
(Floins, Undates, nstalation, Health Mionitoring, Alerting, Acitg)

OpenFB nterface Laer
{0sta Proles, Conflurstion,Ineracion Patems, dlewsre nerface nd Security)

Publish-Subscribe Middleware

Operatog system

image8.png
0penFMB Node

LE

image9.png
‘OpenfB Node

Unrelated Operating System Instance.
And Programs

Fyperveor

Hardware

image10.png
C D Other Operating System Instance
OpenFMB Node And Programs

Hypervisor
Hardware

image11.png
OpenfMB Node

Non-penfM8 Programs

Tardware

image12.emf
act Microgrid Transitions to Island

Island Recloser:Recloser

Battery Inverter:Battery Inverter

Microgrid Optimizer:Microgrid Optimizer

Back-office SCADA:Utility SCADA

Start

10. Island

recloser

publishes its

unsolicited status

(open)

Send Island Recloser

Status Event (Open)

30. Optimizer

receives status from

Island Recloser

Receive Island

Recloser Status

(Open)

20. Battery Inverter

receives status from

Island Recloser and

switches battery to

voltage source mode (Sv).

Receive Island

Recloser Status

(Open)

End

40. Back-office

SCADA receives

status from Island

Recloser

Receive Island

Recloser Status

(Open)

image13.png
(& Requirement.

= Properties
Properties
Tagged Values
£ Related

] e
i o pe 10
o 10

Aghor shu ~ Last Update: 7/14/2015

Key Words: Created: 52072014

Data Fields:
mRID
timeStamp
nemalOpsn.

LockesOut
disretevalue (50p)
qualty

ok J(et J[o]

image14.png
(& Requirement.

= Properties
Properties
Tagged Values
£ Related.
Links
Files

Seus [Poposed__v] Tipe: Non-Functonal
Dty Phase: 0

oy Ve 10

Author: shu v Last Update: 7/9/2015

Key Words: Crated: 7752015

Transport Reliabilty = Relizble
Life Span = 1Mms.
Durability = persistent

PollRate = N/A
Latency =50 ms.

image15.emf
sd SEQ-001 Recloser to Publish Status Event

Event (Protection) Publisher

Event (Protection) Receiver

Microgrid Optimizer Recloser Battery Inverter Utility SCADA

ref

Publish RecloserEvent to subscribers following the generic Event (Protection) Pattern

Generate status

event message in

OpenFMB format()

image16.emf
sd Event Pattern

Event Receiver Node Event Publisher Node

Event Publisher Event Publisher FMB Event Receiver Event Receiver FMB

loop Transaction

[Until Ack Received]

loop Transaction

[Until Ack Received]

loop Transaction

[Until Ack Received]

Message

Persistent()

Triggered by an event()

Ack()

Message

Persistent()

Ack()

<Event> Message Topic()

<Event> Message Topic()

<Event> Message Topic()

Ack()

image17.emf
class Layered Approach

Reference Models

IEC 61968/61970/62325

(CIM)

Other standards (if needed)

OpenFMB UML Model

image18.emf
MD3i SB Context Diagram

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserEventProfile

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image19.emf
MD3i SB Context Diagram

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserEventModule

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image20.png
RecloserEventhodule

[messagen

L Frimestamp

Reclosereventitodule EH

‘Generated by XMLSpy www.altova.com

image21.png
r

miRecloserEventProfile

—flogicalbevicein

[Frimestamp

ReclosereventProfile £H

‘Generated by XMLSpy www.altova.com

image22.png
) Package (RecloserEvent Module)

atrbuteFomDefaut unqualfied
defautlamespace: itp://operiimb org/isd/2015/07/RecloserEvent
lemertFomDefault qualfied

schemalocation RecloserEvert xsd

targetNiamespace itp://operiimb org/isd/2015/07/RecloserEvent
targetNamespacePrefic m

version 10

B totes | @ properics | Tagged alues

image23.png
itp://operiimb org/isd/2015/08/RecloserEventProfe:
qualfied

RedloserEventProfie xsd

hitp://operiimb org/isd/2015/08/RecloserEventProfe:
10

B otes | @ properics | Tagged alues

image24.png
IA%I

Generate Source Code .. Ctri=Alt=K
Import Source Directory Ctrl=Shift-U
Import from source file(s) »
Import Binary Module...

Import Resource Script

Synchronize Package with Code ... Ctri=Alt=M

Import DB schema from ODBC

Import XML Sche
Generate XML Schema...
Generate WSDL| Generate XSD from current package

Import WSDL...

Reset Options for this Package ...
Reset DBMS Options...

‘Set as Namespace Root
‘Suppress Namespace
Live Code Generation

Target In

Extensions

Properties...
Linked Document...
Advanced

q

Ctrl-Alt-D.

List View
Gantt View
Specification Manager

Add a Model using Wizard...
Add a Package...

Add Diagram...
Add Element...

Ctrl=Shift=M

|
Package Control

Copy / Paste
Move up.

Move down
Contents

G Find in all Diagrams...

+
+

ctr-u

Documentation

Execution Analyzer
Import/Export

Delete ‘RecloserControlModule”

Help...

image25.png

image26.emf
5. Business Context

4. Semantic Understanding

3. Syntatic InterOperability

2. Network Interoperability

1. Basic Connectivity

6. Business Procedures

Business Objectives

8. Economic/Regulatory Policy

Technical

Informational

Business

ß

S

h

a

r

e

d

M

e

a

n

i

n

g

o

f

C

o

n

t

e

x

t

à

ß

R

e

s

o

u

r

c

e

I

d

e

n

t

i

f

i

e

r

s

à

ß

T

i

m

e

S

y

n

c

h

a

n

d

S

e

q

u

e

n

c

i

n

g

à

ß

S

e

c

u

r

i

t

y

a

n

d

P

r

i

v

a

c

y

à

ß

L

o

g

g

i

n

g

a

n

d

A

u

d

i

t

i

n

g

à

ß

T

r

a

n

s

a

c

t

i

o

n

&

S

t

a

t

e

M

a

n

a

g

e

m

e

n

t

à

ß

S

y

s

t

e

m

P

r

e

s

e

r

v

a

t

i

o

n

à

ß

Q

u

a

l

i

t

y

o

f

S

e

r

v

i

c

e

à

ß

D

i

s

c

o

v

e

r

y

a

n

d

C

o

n

f

i

g

u

r

a

t

i

o

n

à

ß

S

y

s

t

e

m

E

v

o

l

u

t

i

o

n

&

S

c

a

l

a

b

i

l

i

t

y

à

Cross Cutting Issues

Interoperability Categories

Open FMB

image27.emf
class Common

Reading & Information

Control

Status & Events

IdentifiedObject

Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

BatteryStatus

+ isCharging: boolean [0..1]

+ isConnected: boolean [0..1]

+ mode: string [0..1]

+ stateOfCharge: float [0..1]

SolarInverterStatus

+ isConnected: boolean [0..1]

EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

SolarControl

+ isIslanded: boolean [0..1]

BatterySystemControl

+ isIslanded: boolean [0..1]

GenerationStatus

+ isAutoOn: boolean [0..1]

+ isConnected: boolean [0..1]

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

BatterySystem

EnergyConsumer

+ operatingLimit: string [0..1]

Event

+ timestamp: dateTime [0..1]

+ type: string [0..1]

+ value: string [0..1]

GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

Meter

PowerSystemResource

Recloser

+ normalOpen: boolean [0..1]

SolarInverter

GenerationControl

LoadControl

RecloserControl

BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplier [0..1]

+ value1Unit: UnitSymbol [0..1]

+ value2Multiplier: UnitMultiplier [0..1]

+ value2Unit: UnitSymbol [0..1]

Curve

+ curveStyle: CurveStyle [0..1]

+ xMultiplier: UnitMultiplier [0..1]

+ xUnit: UnitSymbol [0..1]

+ y1Multiplier: UnitMultiplier [0..1]

+ y1Unit: UnitSymbol [0..1]

+ y2Multiplier: UnitMultiplier [0..1]

+ y2Unit: UnitSymbol [0..1]

+ y3Multiplier: UnitMultiplier [0..1]

+ y3Unit: UnitSymbol [0..1]

CurveData

+ xvalue: float [0..1]

+ y1value: float [0..1]

+ y2value: float [0..1]

+ y3value: float [0..1]

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

InterchangeSchedule

+ directionType: InterTieDirection [0..1]

+ energyType: MarketProductType [0..1]

+ intervalLength: int [0..1]

+ scheduleType: EnergyProductType [0..1]

IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Market

+ actualEnd: dateTime [0..1]

+ actualStart: dateTime [0..1]

+ dst: boolean [0..1]

+ end: dateTime [0..1]

+ localTimeZone: string [0..1]

+ start: dateTime [0..1]

+ status: string [0..1]

+ timeIntervalLength: float [0..1]

+ tradingDay: dateTime [0..1]

+ tradingPeriod: string [0..1]

MarketFactors

+ intervalEndTime: dateTime [0..1]

+ intervalStartTime: dateTime [0..1]

MarketRun

+ executionType: ExecutionType [0..1]

+ marketEndTime: dateTime [0..1]

+ marketID: string [0..1]

+ marketRunID: string [0..1]

+ marketStartTime: dateTime [0..1]

+ marketType: MarketType [0..1]

OptimizedMicroGridMarket

Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

SecurityEvent

+ log: string [0..1]

+ severity: string [0..1]

SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

SolarCapability

+ ahrRtg: float [0..1]

+ timestamp: dateTime [0..1]

+ voltage: float [0..1]

+ wRtgMaxVal: float [0..1]

+ wRtgMinVal: float [0..1]

+ qualityFlag: string [0..1]

0..1

0..1

0..1

0..1

0..*

1

0..*

0..*

+SetPoints

0..*

1

+CurveData

0..*

+Curve

1

image28.emf
class Containers

Container

+ messageID: string

+ timestamp: dateTime

BatteryControlModule

BatteryReadingModule

BatteryEventModule

ResourceReadingModule

RecloserControlModule

RecloserReadingModule

RecloserEventModule

SolarControlModule

SolarReadingModule

SolarEventModule

SolarCapabilityModule

SolarForecastModule

LoadForecastModule

SecurityEventModule

InterchangeScheduleModule

GenerationForecastModule

LoadReadingModule

LoadControlModule

GenerationReadingModule

GenerationEventModule

GenerationControlModule

image29.emf
 RecloserControlModule

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserControlModule

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::

RecloserControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..1

+SetPoints

0..*

1

image30.emf
 RecloserControlProfile

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserControlProfile

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ value: float [0..1]

Common::

RecloserControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

+SetPoints

0..*

1

0..1

image31.emf
MD3i SB Context Diagram

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserEventModule

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image32.emf
MD3i SB Context Diagram

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserEventProfile

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image33.emf
 RecloserReadingModule

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserReadingModule

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::RecloserStatus

+ isBlocked: boolean [0..1]

+ switchStatus: SwitchStatusType [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

+Readings

1..*

1

1

1

image34.emf
 RecloserReadingProfile

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Recloser

+ normalOpen: boolean [0..1]

RecloserReadingProfile

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

+Readings

1..*

1

image35.emf
 BatteryControlModule

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::

BatterySystem

BatteryControlModule

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

Common::

BatterySystemControl

+ isIslanded: boolean [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

0..1

1

1

+SetPoints

0..*

image36.emf
 BatteryControlProfile

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::

BatterySystem

BatteryControlProfile

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ value: float [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

Common::

BatterySystemControl

+ isIslanded: boolean [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..1

1

+SetPoints

0..*

image37.emf
 BatteryControlModule

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::

BatterySystem

BatteryControlModule

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

Common::

BatterySystemControl

+ isIslanded: boolean [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

0..1

1

1

+SetPoints

0..*

image38.emf
MD3i SB Context Diagram

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::

BatterySystem

BatteryEventProfile

Common::BatteryStatus

+ isCharging: boolean [0..1]

+ isConnected: boolean [0..1]

+ mode: string [0..1]

+ stateOfCharge: float [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image39.emf
MD3i SB Context Diagram

Common::

BatterySystem

BatteryReadingModule

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::BatteryStatus

+ isCharging: boolean [0..1]

+ isConnected: boolean [0..1]

+ mode: string [0..1]

+ stateOfCharge: float [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

0..1

+Readings

1..*

1

1

image40.emf
MD3i SB Context Diagram

Common::

BatterySystem

BatteryReadingProfile

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

+Readings

1..*

1

1

image41.emf
class SolarCapabilityModule

SolarCapabilityModule

Common::

SolarInverter

Common::SolarCapability

+ ahrRtg: float [0..1]

+ timestamp: dateTime [0..1]

+ voltage: float [0..1]

+ wRtgMaxVal: float [0..1]

+ wRtgMinVal: float [0..1]

+ qualityFlag: string [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image42.emf
class SolarCapabilityProfile

SolarCapabilityProfile

Common::

SolarInverter

Common::SolarCapability

+ ahrRtg: float [0..1]

+ timestamp: dateTime [0..1]

+ voltage: float [0..1]

+ wRtgMaxVal: float [0..1]

+ wRtgMinVal: float [0..1]

+ qualityFlag: string [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image43.emf
 SolarControlModule

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::

SolarInverter

SolarControlModule Common::SolarControl

+ isIslanded: boolean [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

+SetPoints

0..* 1

image44.emf
 SolarControlProfile

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::

SolarInverter

SolarControlProfile Common::SolarControl

+ isIslanded: boolean [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

+SetPoints

0..* 1

1

image45.emf
class SolarEventModule

Common::

SolarInverter

SolarEventModule

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::SolarInverterStatus

+ isConnected: boolean [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image46.emf
class SolarEventProfile

Common::

SolarInverter

SolarEventProfile

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::SolarInverterStatus

+ isConnected: boolean [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image47.emf
class SolarForecastModule

SolarForecastModule

Common::

SolarInverter

Common::BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplier [0..1]

+ value1Unit: UnitSymbol [0..1]

+ value2Multiplier: UnitMultiplier [0..1]

+ value2Unit: UnitSymbol [0..1]

Common::ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

Common::IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..*

1

image48.emf
class SolarForecastProfile

SolarForecastProfile

Common::

SolarInverter

Common::BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplierKind [0..1]

+ value1Unit: UnitSymbolKind [0..1]

+ value2Multiplier: UnitMultiplierKind [0..1]

+ value2Unit: UnitSymbolKind [0..1]

Common::ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

Common::IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

0..*

image49.emf
 SolarReadingModule

Common::SolarInverter

SolarReadingModule

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::SolarInverterStatus

+ isConnected: boolean [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

+Readings

1..*

0..1

image50.emf
 SolarReadingProfile

Common::SolarInverter

SolarReadingProfile

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

+Readings

1..*

image51.emf
 ResourceReadingModule

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

ResourceReadingModule

Common::Meter

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

PowerSystemResource

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

0..1

+Readings

1..*

+Meter

1

1

image52.emf
 ResourceReadingProfile

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

ResourceReadingProfile

Common::Meter

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

PowerSystemResource

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

+Readings

1..*

+Meter

1

1

0..1

image53.emf
class ResourceStatusProfile

Container

+ logicalDeviceID: string

+ timestamp: dateTime

PowerSystemResource

::IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

ResourceStatusProfile

StringMeasurement

+ mRID: string [0..1]

+ description: string [0..1]

+ measurementType: string [0..1]

+ name: string [0..1]

+ phases: PhaseCodeKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

StringMeasurementValue

+ value: string [0..1]

+ timeStamp: dateTime [0..1]

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

1

+StringMeasurementValues

1

1

+StringMeasurements

1..*

image54.emf
class InterchangeScheduleModule

Common::InterchangeSchedule

+ directionType: InterTieDirection [0..1]

+ energyType: MarketProductType [0..1]

+ intervalLength: int [0..1]

+ scheduleType: EnergyProductType [0..1]

InterchangeScheduleModule

Common::Container

+ messageID: string

+ timestamp: dateTime

IdentifiedObject

Common::

PowerSystemResource

IdentifiedObject

Common::Curve

+ curveStyle: CurveStyle [0..1]

+ xMultiplier: UnitMultiplier [0..1]

+ xUnit: UnitSymbol [0..1]

+ y1Multiplier: UnitMultiplier [0..1]

+ y1Unit: UnitSymbol [0..1]

+ y2Multiplier: UnitMultiplier [0..1]

+ y2Unit: UnitSymbol [0..1]

+ y3Multiplier: UnitMultiplier [0..1]

+ y3Unit: UnitSymbol [0..1]

Common::CurveData

+ xvalue: float [0..1]

+ y1value: float [0..1]

+ y2value: float [0..1]

+ y3value: float [0..1]

Common::

OptimizedMicroGridMarket

IdentifiedObject

Common::Market

+ actualEnd: dateTime [0..1]

+ actualStart: dateTime [0..1]

+ dst: boolean [0..1]

+ end: dateTime [0..1]

+ localTimeZone: string [0..1]

+ start: dateTime [0..1]

+ status: string [0..1]

+ timeIntervalLength: float [0..1]

+ tradingDay: dateTime [0..1]

+ tradingPeriod: string [0..1]

Common::MarketFactors

+ intervalEndTime: dateTime [0..1]

+ intervalStartTime: dateTime [0..1]

Common::MarketRun

+ executionType: ExecutionType [0..1]

+ marketEndTime: dateTime [0..1]

+ marketID: string [0..1]

+ marketRunID: string [0..1]

+ marketStartTime: dateTime [0..1]

+ marketType: MarketType [0..1]

0..1

0..*

1

1

0..*

1

+CurveData

0..*

+Curve

1

0..1

0..1

image55.emf
class InterchangeScheduleProfile

Common::InterchangeSchedule

+ directionType: InterTieDirection [0..1]

+ energyType: MarketProductType [0..1]

+ intervalLength: int [0..1]

+ scheduleType: EnergyProductType [0..1]

InterchangeScheduleProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

IdentifiedObject

Common::

PowerSystemResource

IdentifiedObject

Common::Curve

+ curveStyle: CurveStyle [0..1]

+ xMultiplier: UnitMultiplierKind [0..1]

+ xUnit: UnitSymbolKind [0..1]

+ y1Multiplier: UnitMultiplierKind [0..1]

+ y1Unit: UnitSymbolKind [0..1]

+ y2Multiplier: UnitMultiplierKind [0..1]

+ y2Unit: UnitSymbolKind [0..1]

+ y3Multiplier: UnitMultiplierKind [0..1]

+ y3Unit: UnitSymbolKind [0..1]

Common::CurveData

+ xvalue: float [0..1]

+ y1value: float [0..1]

+ y2value: float [0..1]

+ y3value: float [0..1]

Common::

OptimizedMicroGridMarket

IdentifiedObject

Common::Market

+ actualEnd: dateTime [0..1]

+ actualStart: dateTime [0..1]

+ dst: boolean [0..1]

+ end: dateTime [0..1]

+ localTimeZone: string [0..1]

+ start: dateTime [0..1]

+ status: string [0..1]

+ timeIntervalLength: float [0..1]

+ tradingDay: dateTime [0..1]

+ tradingPeriod: string [0..1]

Common::MarketFactors

+ intervalEndTime: dateTime [0..1]

+ intervalStartTime: dateTime [0..1]

Common::MarketRun

+ executionType: ExecutionType [0..1]

+ marketEndTime: dateTime [0..1]

+ marketID: string [0..1]

+ marketRunID: string [0..1]

+ marketStartTime: dateTime [0..1]

+ marketType: MarketType [0..1]

1

0..*

1

+CurveData

0..*

+Curve

1

0..1

0..1

0..1

0..*

1

image56.emf
class LoadControlModule

Common::Container

+ messageID: string

+ timestamp: dateTime

LoadControlModule

Common::EnergyConsumer

+ operatingLimit: string [0..1]

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::LoadControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

0..1

+SetPoints

0..*

1

1

image57.emf
class LoadControlProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

LoadControlProfile

Common::EnergyConsumer

+ operatingLimit: string [0..1]

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

Common::LoadControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

1

0..1

+SetPoints

0..*

1

image58.emf
class LoadForecastModule

LoadForecastModule

BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplier [0..1]

+ value1Unit: UnitSymbol [0..1]

+ value2Multiplier: UnitMultiplier [0..1]

+ value2Unit: UnitSymbol [0..1]

ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Container

+ messageID: string

+ timestamp: dateTime

EnergyConsumer

+ operatingLimit: string [0..1]

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..*

1

image59.emf
class LoadForecastProfile

LoadForecastProfile

BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplierKind [0..1]

+ value1Unit: UnitSymbolKind [0..1]

+ value2Multiplier: UnitMultiplierKind [0..1]

+ value2Unit: UnitSymbolKind [0..1]

ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Container

+ logicalDeviceID: string

+ timestamp: dateTime

EnergyConsumer

+ operatingLimit: string [0..1]

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..*

1

image60.emf
class LoadReadingModule

Common::Container

+ messageID: string

+ timestamp: dateTime

LoadReadingModule

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::EnergyConsumer

+ operatingLimit: string [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1..*

1

image61.emf
class LoadReadingProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

LoadReadingProfile

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::EnergyConsumer

+ operatingLimit: string [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1..*

1

image62.emf
class LoadStatusProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::EnergyConsumer

+ operatingLimit: string [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

LoadStatusProfile

Common::StringMeasurement

+ mRID: string [0..1]

+ description: string [0..1]

+ measurementType: string [0..1]

+ name: string [0..1]

+ phases: PhaseCodeKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

Common::

StringMeasurementValue

+ value: string [0..1]

+ timeStamp: dateTime [0..1]

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+StringMesaurements

1..*

1

1

+StringMeasurementValues

1

image63.emf
class GenerationControlModule

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplier [0..1]

+ unit: UnitSymbol [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

GenerationControlModule

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

Common::

GenerationControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

+SetPoints

0..*

1

0..1

1

image64.emf
class GenerationControlProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::SetPoint

+ controlType: string [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

+ value: float [0..1]

Common::EndDeviceControl

+ issueID: string [0..1]

+ name: string [0..1]

+ scheduledInterval: DateTimeInterval [0..1]

GenerationControlProfile

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

Common::

GenerationControl

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

Common::

EndDeviceControlType

+ action: string [0..1]

+ type: string [0..1]

+SetPoints

0..*

1

0..1

1

image65.emf
class GenerationEventModule

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::Container

+ messageID: string

+ timestamp: dateTime

GenerationEventModule Common::GenerationStatus

+ isAutoOn: boolean [0..1]

+ isConnected: boolean [0..1]

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image66.emf
class GenerationEventProfile

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

GenerationEventProfile Common::GenerationStatus

+ isAutoOn: boolean [0..1]

+ isConnected: boolean [0..1]

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

image67.emf
class GenerationForecastModule

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

GenerationForecastModule

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplier [0..1]

+ value1Unit: UnitSymbol [0..1]

+ value2Multiplier: UnitMultiplier [0..1]

+ value2Unit: UnitSymbol [0..1]

Common::ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

Common::IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..*

1

image68.emf
class GenerationForecastProfile

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

GenerationForecastProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::BasicIntervalSchedule

+ startTime: dateTime [0..1]

+ value1Multiplier: UnitMultiplierKind [0..1]

+ value1Unit: UnitSymbolKind [0..1]

+ value2Multiplier: UnitMultiplierKind [0..1]

+ value2Unit: UnitSymbolKind [0..1]

Common::ForecastSchedule

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

Common::IrregularTimePoint

+ value1: float [0..1]

+ value2: float [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

0..*

1

image69.emf
class GenerationReadingModule

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCode [0..1]

+ multiplier: UnitMultiplier [0..1]

+ name: string [0..1]

+ unit: UnitSymbol [0..1]

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

GenerationReadingModule Common::GenerationStatus

+ isAutoOn: boolean [0..1]

+ isConnected: boolean [0..1]

Common::Status

+ qualityFlag: HexBinary16 [0..1]

+ timestamp: dateTime [0..1]

+ value: string [0..1]

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1..*

0..1

1

1

image70.emf
class GenerationReadingProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::ReadingType

+ flowDirection: FlowDirectionKind [0..1]

+ phases: PhaseCodeKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

+ name: string [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Reading

+ qualityFlag: HexBinary16 [0..1]

+ source: string [0..1]

+ timePeriod: DateTimeInterval [0..1]

+ value: float

Common::GeneratingUnit

+ maxOperatingP: ActivePower [0..1]

GenerationReadingProfile

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

1

1..*

image71.emf
class SecurityEventModule

Common::SecurityEvent

+ log: string [0..1]

+ severity: string [0..1]

Common::Event

+ timestamp: dateTime [0..1]

+ type: string [0..1]

+ value: string [0..1]

SecurityEventModule

Common::Container

+ messageID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

image72.emf
class SecurityEventProfile

Common::SecurityEvent

+ log: string [0..1]

+ severity: string [0..1]

Common::Event

+ timestamp: dateTime [0..1]

+ type: string [0..1]

+ value: string [0..1]

SecurityEventProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::

IdentifiedObject

+ mRID: uuidType [0..1]

+ description: string [0..1]

+ name: string [0..1]

1

image73.emf
class WeatherDataProfile

WeatherDataProfile

Common::Container

+ logicalDeviceID: string

+ timestamp: dateTime

Common::WeatherData

+ version: string [0..1]

+ versionDateTime: dateTime [0..1]

Common::Temperature

+ unit: UnitSymbolKind [0..1]

Common::Humidity

+ unit: UnitSymbolKind [0..1]

Common::SunRadiation

+ multiplier: UnitMultiplierKind [0..1]

+ unit: UnitSymbolKind [0..1]

Common::Wind

+ directionUnit: UnitSymbolKind [0..1]

+ speedUnit: UnitSymbolKind [0..1]

Common::HumidityData

+ timestamp: dateTime [0..1]

+ value: float [0..1]

Common::SunRadiationData

+ timestamp: dateTime [0..1]

+ value: float [0..1]

Common::TemperatureData

+ timestamp: dateTime [0..1]

+ value: float [0..1]

Common::WindData

+ timestamp: dateTime [0..1]

+ windDirection: float [0..1]

+ windSpeed: float [0..1]

0..*

1

0..1

0..1

0..*

0..1

0..1

0..*

image74.png
‘Reading Pusliner Reading Reciver

A A

Micogeid Optimizer uii DS,
i

i
|

| Grste Opene resings
i

5

Publish RecloserReading to subseribers following the generic Reading Patiern

image75.jpg
5d Reading Pattern

%

Resding Publsher
i

Resding Fublisher Nods

Ressing Publsher FIIE
I

%

%

Resding Receiver flode.

%

Resding Receiver FB Resding Receiver
"

Triggered by dlos) |

<Reading Messsge Topiol)

<Reading> Messsge Topic),

<Reading Wesssge Topiol

image76.jpg
sd Control Pattern

Contrl viggered)

7

Control lsuer

Contol lsuer Node

7

ool lsuer FUE.
T

7

‘Control Recaiver FIVE

Contol receiver Node.

?

Control Receiver

Toop Transat

{unsi Resee]

Message Received

<Contol> Msssage Topicd)

|contol Messsge Responseq

<Control> Message Topio)

Control Misszag Responsel)

<Contol> Message Topic()

Frocess
messsge)|

