

515 KING STREET, ALEXANDRIA VA 22314

MEMORANDUM

To: Hon. Laura Swett, Chair, Federal Energy Regulatory Commission
From: Andrew Langer, Director, Center for Regulatory Freedom, CPAC Foundation
Date: January 20, 2026
Re: Comments on the Federal Energy Regulatory Commission Notice of Proposed Rulemaking, “Standards for Business Practices of Interstate Natural Gas Pipelines,” Docket #FERC-2025-2761-0001, Fed. Reg. 2025-20325, Published November 19, 2025

Below are comments of the American Conservative Union Foundation's (d/b/a. Conservative Political Action Coalition Foundation) (hereinafter “CPAC Foundation”) Center for Regulatory Freedom (hereinafter “CRF”), in response to the Federal Energy Regulatory Commission (FERC) Notice of Proposed Rulemaking, “Standards for Business Practices of Interstate Natural Gas Pipelines,” Docket #FERC-2025-2761-0001, Fed. Reg. 2025-20325, published November 19, 2025.

CRF is a project of the CPAC Foundation, a non-profit, non-partisan 501(c)(3) research and education foundation. Our mission is to inject a common-sense perspective into the regulatory process, to ensure that the risks and costs of regulations are fully based on sound scientific and economic evidence, and to ensure that the voices, interests, and freedoms of Americans, and especially of small businesses, are fully represented in the regulatory process and debates. Finally, we work to ensure that regulatory proposals address real problems, that the proposals serve to ameliorate those problems, and, perhaps most importantly, that those proposals do not, in fact, make public policy problems worse.

Introduction

The Center for Regulatory Freedom (CRF) respectfully submits these comments in response to the Federal Energy Regulatory Commission’s Notice of Proposed Rulemaking in Docket No. RM96-1-044. CRF strongly supports the Commission’s proposal to incorporate updated gas-

electric coordination standards developed through the North American Energy Standards Board (NAESB) into its regulations governing interstate natural gas pipelines. The Commission's approach reflects a disciplined, reliability-focused response to documented system failures exposed during recent extreme weather events, particularly Winter Storm Elliott.

CRF commends the Federal Energy Regulatory Commission for advancing a measured, consensus-driven framework that improves situational awareness and operational coordination without resorting to prescriptive or speculative regulatory expansion. By relying on NAESB's multi-stakeholder process and incorporating narrowly tailored business practice standards, the Commission appropriately balances reliability objectives with transparency, flexibility, and regulatory restraint.

The proposal recognizes a central lesson from recent grid emergencies: reliability failures are often driven not by a lack of physical resources alone, but by insufficient coordination, incomplete information, and misaligned operational expectations between interconnected systems. Enhancing the timely availability of relevant, standardized data—particularly during extreme weather and emergency conditions—is a practical and cost-effective means of reducing outage risk for consumers and strengthening overall system resilience.

CRF further supports the Commission's conclusion that these reforms impose modest, one-time compliance costs that are justified by their reliability benefits. Avoiding prolonged outages, generator failures, and cascading system disruptions yields significant consumer and economic value, far exceeding the limited implementation burdens identified in the Notice.

In addition to supporting the Commission's proposed incorporation of the NAESB standards, CRF offers comments to highlight an important and increasingly consequential reliability dimension that aligns with the Commission's objectives but has received comparatively little attention in federal reliability discussions: the growing dependence of American households on natural gas delivery for emergency power during extended electric outages. As residential reliance on whole-home natural gas generators expands, policies that discourage or delay natural gas transmission and distribution infrastructure risk creating hidden vulnerabilities that can leave families without power when it is most needed.

CRF raises this issue not to broaden the Commission's jurisdiction or redirect the scope of this proceeding, but to underscore how evolving patterns of gas reliance reinforce the importance of robust natural gas infrastructure, effective coordination, and comprehensive situational awareness. Addressing these interdependencies strengthens—not dilutes—the Commission's core mission of ensuring reliable energy service for consumers, particularly under stressed system conditions.

Executive Summary

The Center for Regulatory Freedom (CRF) strongly supports the Federal Energy Regulatory Commission's Notice of Proposed Rulemaking in Docket No. RM96-1-044 to incorporate updated gas-electric coordination standards developed through the North American Energy Standards Board (NAESB). CRF applauds the Commission for advancing a careful, reliability-focused approach that responds directly to operational failures revealed during recent extreme weather events, while remaining grounded in consensus standards and regulatory restraint.

CRF agrees that improving situational awareness and coordination between interstate natural gas pipelines, electric generators, and grid operators is essential to maintaining reliability during periods of coincident stress. The Commission's proposal appropriately recognizes that modern reliability challenges often stem from information gaps, timing mismatches, and fragmented coordination—not merely from physical fuel shortages—and that targeted improvements in data availability can materially reduce outage risk.

Specifically, CRF supports the Commission's proposal to incorporate by reference the following NAESB WGQ standard modifications:

- The establishment of a centralized “Gas Electric Coordination” information posting category to streamline access to critical, publicly available data during extreme weather and emergency events.
- The posting of scheduled quantity information for power plants directly connected to interstate pipelines, enhancing real-time operational visibility for RTOs, ISOs, and other stakeholders without exposing commercially sensitive information.
- The inclusion of geographic information in critical pipeline notices, enabling faster and more accurate assessment of system impacts and downstream risks.

CRF further agrees with the Commission's determination that these reforms impose modest, one-time compliance costs that are justified by their substantial reliability benefits. Avoiding prolonged outages, generator failures, and cascading system disruptions delivers significant value to consumers and the broader economy, far outweighing the limited implementation burdens identified in the Notice.

In addition to endorsing the Commission's proposal, CRF highlights an important reliability consideration that aligns directly with the objectives of this proceeding: the growing dependence of American households on natural gas delivery for emergency power. Millions of homes now rely on whole-home natural gas generators during extended electric outages. As a result, natural gas transmission and distribution infrastructure has become an increasingly critical component of household resilience. Federal policies that discourage or delay the deployment of new natural gas infrastructure—particularly in new residential construction—risk creating hidden vulnerabilities that can leave families without power during precisely the emergencies these systems are meant to address.

CRF raises this issue to reinforce, not expand, the Commission's focus on reliability and coordination. As gas dependence evolves across both electric generation and residential emergency use, reliability planning and situational awareness frameworks must account for downstream consequences and interdependencies across the energy system.

CRF urges the Commission to finalize the proposed rule and continue fostering incremental, consensus-based improvements that strengthen coordination, transparency, and resilience across interconnected energy infrastructures. By doing so, the Commission advances its core mission of protecting consumers and ensuring reliable energy service under increasingly challenging conditions.

Section I. FERC's Proposal Advances Practical Gas-Electric Reliability Through Measured Coordination Reforms

A. Winter Storm Elliott Demonstrated the Cost of Poor Gas-Electric Visibility

Recent extreme weather events—most notably Winter Storm Elliott in December 2022—demonstrated that reliability failures in the modern energy system are often driven as much by **coordination breakdowns and information gaps** as by absolute shortages of fuel or infrastructure capacity. During Elliott, unanticipated natural gas delivery constraints, poorly communicated system conditions, and misaligned expectations between pipelines and power generators contributed directly to generator outages and cascading reliability risks across the bulk electric system.

These events underscored a critical reality: even where physical gas supplies existed, the lack of timely, actionable, and standardized information limited the ability of grid operators and generators to respond effectively under stress. In many cases, system operators were forced to make decisions with incomplete visibility into gas scheduling, pipeline conditions, and geographically specific disruptions. The result was avoidable load shedding, generator derates, and consumer harm. The Commission's proposal appropriately recognizes that **reliability failures are frequently informational failures**, and that closing these gaps is an essential component of preventing recurrence.

B. NAESB's Consensus Standards Represent the Right Governance Model

CRF commends the Federal Energy Regulatory Commission for relying on standards developed through the North American Energy Standards Board's consensus-based process rather than pursuing ad hoc or prescriptive regulatory mandates. NAESB's Wholesale Gas Quadrant process draws on the technical expertise of pipelines, generators, grid operators, marketers, and other market participants who must operationalize these standards under real-world conditions. This governance model promotes practicality, buy-in, and continuous improvement.

The Commission's decision to incorporate narrowly tailored NAESB standards reflects appropriate regulatory humility—recognizing that complex, interdependent systems are best improved through incremental, technically grounded reforms rather than sweeping regulatory redesign. This approach is especially well-suited to gas-electric coordination, where operational realities vary by region, system topology, and event type. By anchoring its proposal in broadly supported consensus standards, the Commission strengthens both the legitimacy and the durability of its reliability framework.

C. Centralized, Standardized Information Improves Emergency Decision-Making

CRF strongly supports the creation of a centralized “Gas Electric Coordination” posting category on pipeline informational websites. During emergency conditions, speed, clarity, and usability of information are paramount. Dispersed data, inconsistent formats, or unclear posting locations impose real costs when minutes and hours matter. A clearly designated, standardized posting category materially improves the ability of RTOs, ISOs, generators, and other stakeholders to quickly locate and interpret relevant information under crisis conditions.

The proposed standards appropriately focus on **operational usability rather than data accumulation**. By standardizing where and how key information is posted—without expanding the scope of commercially sensitive disclosures—the Commission enhances situational awareness while preserving market integrity. These reforms are precisely the type of low-cost, high-value coordination improvements that reduce uncertainty, support faster decision-making, and mitigate the risk that localized disruptions escalate into broader system failures.

Taken together, the Commission’s proposal reflects a sound understanding of the lessons of recent reliability events and a disciplined commitment to practical, technically informed solutions.

Section II. The Proposed NAESB Standards Appropriately Balance Transparency, Reliability, and Burden

A. Scheduled Quantity Posting Enhances Situational Awareness Without Commercial Overreach

CRF supports the Commission’s proposal to incorporate NAESB standards that facilitate the posting of scheduled quantity information for power plants directly connected to interstate natural gas pipelines. This information plays a critical role in enhancing situational awareness during emergency and extreme weather conditions, when grid operators and generators must make rapid decisions under uncertainty. Knowing the volume of gas scheduled for delivery—at specific locations and times—allows operators to better anticipate operational constraints and reliability risks.

Importantly, the proposed standards are carefully calibrated to serve **operational reliability objectives**, not market transparency or commercial signaling. The information contemplated for posting is limited, standardized, and publicly available, and is designed to support real-time coordination rather than reveal sensitive contractual terms or strategic bidding behavior. By focusing on aggregate scheduled quantities and clearly defined data fields, the Commission and NAESB have avoided commercial overreach while still delivering meaningful reliability benefits.

This distinction matters. Overly expansive disclosure requirements risk chilling participation or distorting market behavior. The Commission’s proposal instead reflects a clear understanding that **reliability hinges on operational clarity**, not the disclosure of competitive details. CRF therefore agrees that the scheduled quantity posting requirements strike the appropriate balance between usefulness and restraint.

B. Geographic Detail in Critical Notices Is Essential for Risk Assessment

CRF also supports the inclusion of geographic information—such as affected areas, locations, and pipeline facilities—in critical notices issued by natural gas transportation service providers. During emergency conditions, generic or system-wide notices provide limited actionable value. Geographic specificity, by contrast, enables downstream users, generators, and grid operators to rapidly assess exposure, prioritize responses, and allocate resources effectively.

Emergency planning and triage depend on understanding **where** disruptions are occurring and **which facilities or regions are impacted**. Without this information, operators may overreact to localized events or underestimate the significance of disruptions that affect critical nodes. The proposed NAESB standards appropriately recognize that geographic context transforms notices from passive alerts into practical decision-support tools.

These requirements do not impose new operational obligations on pipelines beyond improved communication. Rather, they enhance the clarity and usefulness of information that pipelines already possess and disseminate during critical events. As such, CRF views this reform as a commonsense improvement that materially strengthens system resilience at minimal cost.

C. One-Time, Modest Compliance Costs Are Justified by Reliability Benefits

CRF agrees with the Commission's conclusion that the proposed standards will not have a significant economic impact on a substantial number of small entities and that the associated compliance costs are modest, one-time, and justified. The estimated implementation burdens reflect routine information technology and tariff updates, not ongoing operational expenses or capital investments.

By contrast, the costs of inadequate coordination during emergencies are substantial. Prolonged outages, forced generator derates, emergency load shedding, and cascading system failures impose real and often severe harm on consumers, businesses, and communities. These harms include lost income, health and safety risks, disrupted supply chains, and broader economic damage that far exceed the limited compliance costs identified in this proceeding.

From a regulatory perspective, the Commission's approach exemplifies sound cost-benefit discipline. The proposed standards target well-defined coordination failures, rely on existing consensus processes, and deliver reliability benefits that are disproportionate to their cost. CRF therefore supports the Commission's Regulatory Flexibility Act determinations and urges the Commission to finalize these reforms as a prudent investment in system reliability and consumer protection.

Section III. Reliability Planning Must Account for the Growing Role of Natural Gas in Household Emergency Power

A. Residential Standby Generation Has Become a Core Resilience Tool

Over the past two decades, whole-home standby generators fueled by natural gas have transitioned from a niche product to a mainstream component of household resilience. Improvements in generator technology, declining costs, and greater consumer awareness of outage risks have driven widespread adoption, particularly in regions prone to severe weather, aging grid infrastructure, or public safety power shutoffs. What was once a luxury feature is now commonly marketed as a basic safeguard for family safety and continuity.

This growth has accelerated as outages have become more frequent, more geographically widespread, and longer in duration. Hurricanes, winter storms, heat waves, wildfires, and flooding events increasingly strain electric systems beyond historical norms. In parallel, concerns

about cyber threats and physical attacks on grid infrastructure have reinforced household demand for reliable backup power that can operate independently for extended periods.

Natural gas-fueled standby generators are uniquely suited to this role. Unlike diesel or propane systems, they do not rely on on-site fuel storage that can be exhausted or disrupted during emergencies. When gas delivery is available, these systems can operate continuously for days or weeks, supporting heating, refrigeration, medical equipment, communications, and basic household functions during prolonged outages.

As a result, residential standby generation has become an informal but critical layer of resilience that complements centralized grid reliability. Families increasingly view these systems not as discretionary amenities, but as essential protection against foreseeable risks. This shift has meaningful implications for how energy systems perform under stress, particularly when electric outages coincide with extreme weather events.

The proliferation of these systems also reflects broader public policy signals. Households have been encouraged—explicitly and implicitly—to take greater responsibility for their own emergency preparedness. Backup power capability is often framed as a prudent, even expected, component of household resilience, especially for vulnerable populations and critical needs.

Taken together, these trends indicate that residential standby generation is no longer peripheral to reliability outcomes. It is a material and growing feature of the energy landscape that merits consideration in discussions about system coordination, emergency response, and infrastructure adequacy.

B. Natural Gas Transmission and Distribution Are Prerequisites for Household Resilience

The reliability value of residential standby generators is entirely contingent on the availability of natural gas delivery. Unlike battery systems with fixed capacity or fuel-based generators reliant on stored supplies, natural gas-fueled generators depend on continuous service from upstream transmission and distribution networks. Without gas flow, these systems are rendered inoperable regardless of their technical capabilities.

This dependency underscores a critical point: household resilience increasingly relies on the same gas infrastructure that supports electric generation and other essential services. Residential gas service during emergencies is not a matter of convenience or preference, but a functional prerequisite for backup power that many families now reasonably expect to work when needed.

From a reliability perspective, residential gas demand during outages represents a downstream dependency that can intensify during emergencies. When electric service is interrupted, gas-fired standby generators activate simultaneously across neighborhoods, increasing localized demand precisely when systems may already be stressed by weather-related constraints or upstream disruptions.

This dynamic does not imply that residential customers should be deprioritized or elevated above other uses. Rather, it highlights that gas delivery systems increasingly serve multiple, interdependent reliability functions across sectors. Treating residential gas service as a marginal or optional load overlooks its evolving role in emergency response and household safety.

Framing residential gas delivery as a “lifestyle choice” obscures this reality. For families relying on medical devices, climate control during extreme temperatures, or basic communications, backup power is a necessity. The gas infrastructure that enables this function is therefore part of the broader reliability ecosystem, not a discretionary add-on.

Recognizing this dependency does not require new regulatory mandates. It requires acknowledging that decisions affecting gas transmission and distribution capacity have consequences that extend beyond traditional industrial or utility customers and directly affect household resilience during crises.

C. Federal Policies Discouraging New Gas Infrastructure Create Hidden Emergency Risks

Against this backdrop, CRF is concerned that a range of federal policies and regulatory signals have increasingly discouraged the deployment of new natural gas transmission and distribution infrastructure. Lengthy permitting processes, heightened uncertainty around approvals, and policy narratives that treat gas infrastructure as transitional or undesirable have collectively slowed expansion—even in areas experiencing population growth and new housing development.

In some jurisdictions, these pressures are compounded by restrictions on extending gas distribution service to new residential construction. Where new homes are built without access to natural gas, households are effectively foreclosed from using gas-fired standby generation as an emergency resilience option, regardless of local risk profiles or consumer preferences.

These policies are often justified on environmental or long-term planning grounds, but they rarely account for emergency preparedness implications. Limiting infrastructure deployment may reduce near-term capital investment, but it can also concentrate vulnerability by reducing redundancy and flexibility in energy supply during extreme events.

The risks created by these policies are largely invisible under normal conditions. They emerge only during crises—when electric outages persist, temperatures are extreme, and alternative backup options prove insufficient. At that point, the absence of gas infrastructure is no longer an abstract policy choice but a tangible constraint on household safety and welfare.

Moreover, discouraging incremental gas infrastructure does not eliminate gas dependence; it redistributes and obscures it. Existing systems are asked to serve growing populations and expanding emergency uses without corresponding investment, increasing stress during peak conditions.

CRF emphasizes that these outcomes are typically unintended. Nevertheless, from a reliability standpoint, policies that systematically constrain infrastructure expansion while encouraging reliance on gas-based resilience tools create a structural mismatch that warrants closer examination.

D. Residential Gas Dependence Is Largely Invisible in Current Reliability Models

Despite its growing importance, residential reliance on natural gas for emergency power is largely absent from formal reliability planning and modeling frameworks. Data on the

prevalence, capacity, and activation patterns of whole-home standby generators are limited, fragmented, and rarely integrated into system-wide assessments.

As a result, emergency planning models tend to undercount gas demand during prolonged electric outages. Residential activation of standby generators is often treated as static or negligible, even though real-world events suggest synchronized demand spikes across affected regions.

This blind spot has practical consequences. Underestimating residential gas demand can lead to overly optimistic assumptions about system flexibility and available capacity during emergencies. It can also obscure the cumulative impact of many small loads activating simultaneously under stress.

The lack of visibility also complicates situational awareness during events. Without understanding how residential demand contributes to system conditions, operators may misinterpret pressure drops, flow constraints, or localized disruptions, delaying effective responses.

These gaps are not the result of neglect, but of historical assumptions. Residential customers were long viewed primarily as heating and cooking loads, not as active participants in emergency power provision. That assumption no longer holds in many regions.

Updating reliability perspectives to reflect this evolution does not require perfect data or immediate integration into all models. It begins with recognizing that residential gas dependence has changed in scale and function—and that ignoring it risks repeating coordination failures under new guises.

E. This Issue Directly Relates to FERC's Coordination and Awareness Objectives

CRF raises these considerations because they directly reinforce the Commission's objectives in this proceeding: improving coordination, enhancing situational awareness, and reducing the risk of cascading failures during extreme events. Residential gas reliability is not separate from these goals; it is a downstream manifestation of the same interdependencies the Commission is addressing upstream.

Situational awareness during emergencies depends on understanding how gas systems are being used across all critical functions. As residential standby generation grows, it becomes part of the demand profile that shapes system stress, operational decisions, and emergency communications.

Similarly, effective coordination requires recognizing how constraints or disruptions propagate beyond traditional generator interfaces. A localized gas delivery issue can simultaneously affect electric generation and thousands of households relying on backup power, magnifying its consequences.

CRF is not suggesting that the Commission regulate housing policy, residential construction, or consumer energy choices. Rather, CRF urges recognition that infrastructure decisions and coordination frameworks have system-wide effects that cross artificial sectoral boundaries.

The NAESB standards under consideration represent an important step toward better information sharing and coordination. Acknowledging residential gas dependence strengthens the rationale for these reforms by highlighting the breadth of consumers and functions that benefit from improved visibility and communication.

By situating household resilience within the broader reliability conversation, the Commission can better anticipate emerging risks and ensure that coordination efforts keep pace with real-world energy use. This recognition enhances—not expands—the Commission’s core reliability mission.

Section IV. FERC Should Encourage Continued Examination of Downstream Gas Dependencies

A. Commissioner Chang’s Concurrence Appropriately Invites Broader Reliability Dialogue

CRF appreciates the separate concurrence issued by Judy W. Chang, which underscores that while the proposed NAESB standards represent meaningful progress, additional work remains necessary to fully address gas–electric coordination challenges. The concurrence explicitly encourages stakeholders to identify areas where further improvements in information sharing and coordination would enhance reliability, particularly across interconnected segments of the natural gas supply chain.

CRF submits these comments in direct response to that invitation. The growing role of natural gas in residential emergency power, and the downstream dependencies it creates, are precisely the type of emerging reliability considerations that warrant early examination rather than reactive response after future outages. Highlighting these issues now aligns with the Commission’s stated objective of learning from recent events and anticipating future system stresses.

By acknowledging that incremental reforms, while valuable, may not capture the full scope of evolving interdependencies, the concurrence reflects a pragmatic and forward-looking regulatory posture. CRF’s discussion of residential gas reliance is offered in that same spirit: to inform, not to prescribe, and to complement—not complicate—the Commission’s current proposal.

Engaging these issues at an early stage allows the Commission, NAESB, and industry participants to consider whether existing coordination frameworks sufficiently capture real-world system behavior during emergencies. That dialogue is most productive when it begins before reliability gaps manifest as consumer harm.

B. Future Coordination Efforts Should Avoid Artificial System Boundaries

Modern reliability challenges rarely respect traditional sectoral or jurisdictional boundaries. Failures in one part of the energy system routinely propagate across others, particularly during extreme weather or prolonged outages. Gas delivery constraints affect electric generation; electric outages activate residential backup generation; and both dynamics place additional stress on shared infrastructure.

CRF encourages the Commission to continue fostering coordination efforts that reflect these realities rather than reinforcing artificial distinctions between “upstream” and “downstream” users. While regulatory authority may differ across sectors, reliability outcomes do not. Effective coordination depends on understanding how decisions and constraints in one domain influence behavior and risk elsewhere.

NAESB’s multi-quadrant structure and consensus-driven process are well suited to examining these interactions. Continued engagement through NAESB and related industry forums can help identify emerging dependencies, data gaps, and coordination needs without imposing premature or rigid regulatory solutions.

Encouraging this examination does not require immediate rulemaking. It requires openness to cross-sector insights and a willingness to revisit assumptions about how energy systems are used under stress. Residential gas reliance for emergency power is one such assumption that has evolved significantly in recent years.

C. Information Gaps Today Become Reliability Failures Tomorrow

A consistent lesson from recent reliability events is that today’s information gaps often become tomorrow’s outage drivers. Systems fail not only when infrastructure is insufficient, but when planners and operators lack visibility into how systems are actually used during extreme conditions.

Residential standby generation illustrates this risk. As reliance grows, the absence of data and awareness around its contribution to gas demand during outages creates blind spots that can undermine emergency response and coordination. These blind spots may remain invisible during normal operations, only to surface when systems are least able to adapt.

Proactive recognition of emerging dependencies allows coordination frameworks to evolve gradually, rather than under crisis conditions. It enables incremental improvements in data collection, communication practices, and planning assumptions that strengthen resilience over time.

CRF urges the Commission to view the issues raised here through this lens. Encouraging continued examination of downstream gas dependencies is not an expansion of regulatory scope, but a prudent extension of the Commission’s commitment to reliability, situational awareness, and informed decision-making in an increasingly interconnected energy system.

Conclusion

The Center for Regulatory Freedom strongly supports the Federal Energy Regulatory Commission’s proposal to incorporate updated gas–electric coordination standards developed through the North American Energy Standards Board. The Commission’s approach reflects a disciplined, technically grounded response to well-documented reliability failures, and appropriately emphasizes coordination, situational awareness, and operational clarity rather than prescriptive regulation.

CRF commends the Commission for relying on consensus-based standards that draw on the expertise of market participants and can be implemented efficiently across diverse systems and regions. The proposed reforms represent precisely the type of incremental, high-value improvements that strengthen reliability during extreme weather and emergency events while maintaining regulatory restraint and minimizing unnecessary burden.

CRF further appreciates the Commission's openness—reflected in both the Notice and Commissioner Chang's concurrence—to continued stakeholder dialogue on emerging reliability challenges. As patterns of energy use evolve, so too must the assumptions that underpin reliability planning and coordination frameworks.

In that spirit, CRF urges the Commission to recognize the growing role of natural gas in household emergency power as an important downstream reliability consideration. Millions of families now rely on gas-fueled standby generators during prolonged electric outages. Policies and planning frameworks that overlook this reliance risk creating hidden vulnerabilities that only become visible during crises, when the consequences for consumer safety and welfare are most severe.

CRF does not suggest that the Commission expand its jurisdiction or regulate residential energy choices. Rather, acknowledging these interdependencies reinforces the importance of robust natural gas infrastructure, effective communication, and comprehensive situational awareness across the energy system. Doing so strengthens the Commission's core reliability mission and enhances its ability to protect consumers under increasingly stressed conditions.

For these reasons, CRF respectfully urges the Commission to finalize the proposed rule and to continue fostering measured, consensus-driven coordination improvements that reflect real-world system behavior and evolving reliability needs.

Sincerely,

Andrew M. Langer
Director
CPAC Foundation Center for Regulatory Freedom

Document Content(s)

CRF Comments to DOE FERC Natural Gas Readiness FINAL 012026.pdf1