Basic Gas Flow Dynamics and Related Scheduling Factors

Pipeline Segment

Wholesale Gas Quadrant North American Energy Standards Board

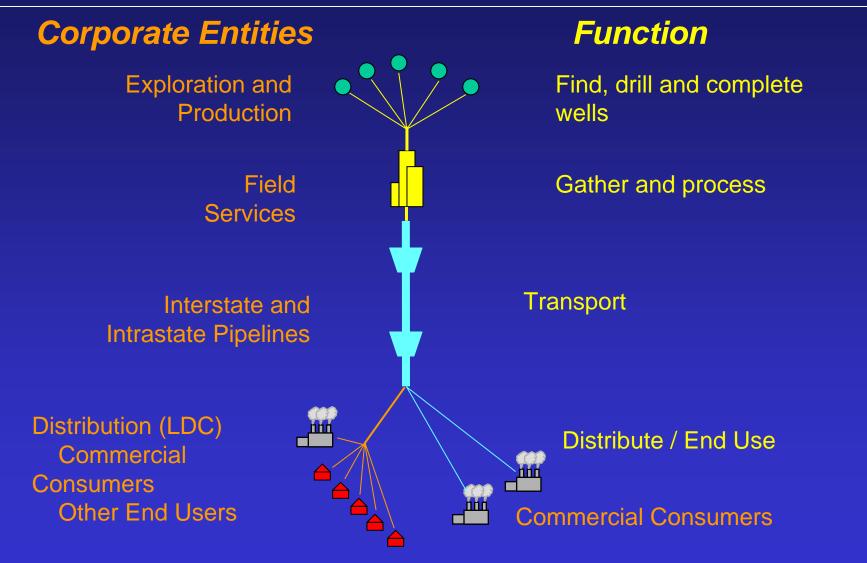
Gas Electric Coordination Task Force

January 29, 2004

Overview

- Gas flow
- Gas day
- Gas scheduling basis
- Gas scheduling process

Factors Involved in Delivering Gas to Market


• Supply source

- Producer
- Marketer
- Contracts (types, credit)

• Transportation facilities

- Gathering
- Transmission
- Distribution
- Timing (physical, administrative)
- Coordination

The Industry Today

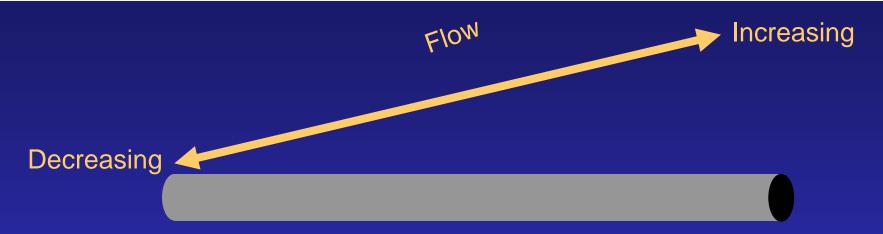
Transportation Infrastructure

• Pipeline facilities

- Supported by firm contracts
 - New pipelines are usually fully subscribed
 - Terms are generally for 10 to 20 years
- One to four years for in-service
 - Regulatory/environmental
 - Material/construction

• Operating rules

- DOT (safety)
- FERC (tariffs)
 - Firm contracts
 - IT contracts


Physical Gas Movement

- Physical commodity
- Flow speed ~ 25 mph
 - 1500 mi Gulf to NYC
 - -2+ days for transportation
- Pressure
 - High to low
 - Interconnect coordination

Gas Flow Dynamics Determinants Affecting Flow

- Pipeline properties
 - Diameter (20" to 42")
 - Length
 - Strength (800# to 1400#)
 - Efficiency/roughness
- Delivery and facility pressures
- Gas temperature and specific gravity
- Elevation change

Gas Flow Dynamics Flow Variation

Smaller diameter Longer length Lower Upstream Pressure Higher Downstream Pressure Higher roughness <u>Higher gas temperature</u> Larger diameter Shorter length Higher Upstream Pressure Lower Downstream Pressure Lower roughness Lower gas temperature

Gas Flow Dynamics Flow Rates

Manage flows to

- Deliver target quantity in specified period (day)
- Meet pressure obligations
- Meet gas quality requirements

Manage modifications to flow rates

- Notification
- Capacity
- Coordination

Gas Flow Dynamics Transportation Operating Terminology

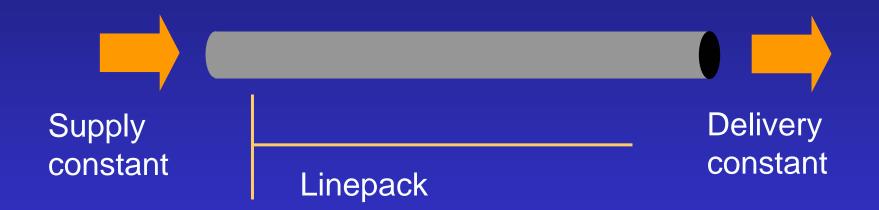
- *Receipts* Gas entering pipeline
 - also Supply
- Deliveries Gas exiting pipeline
 - also demand
 - also load
 - also market
- Throughput Flow rate of gas through pipeline
- Linepack Amount of gas in the pipeline
- **Packing** Increasing linepack
- Drafting Decreasing linepack

Gas Charaacteristics Related To Flow Flexibility

- Natural gas is compressible
- Pipes and compression can provide
 - Variability in delivery rates
 - While receipts are constant

Linepack

- Definition: Amount of gas in pipe
- Function of:
 - Pipe size length, diameter
 - Pressure
 - Higher pressure more linepack
 - Lower pressure less linepack


• Usage Limits

- Delivery pressure obligations
- Maximum Allowable Operating Pressure (MAOP)
- Available compression

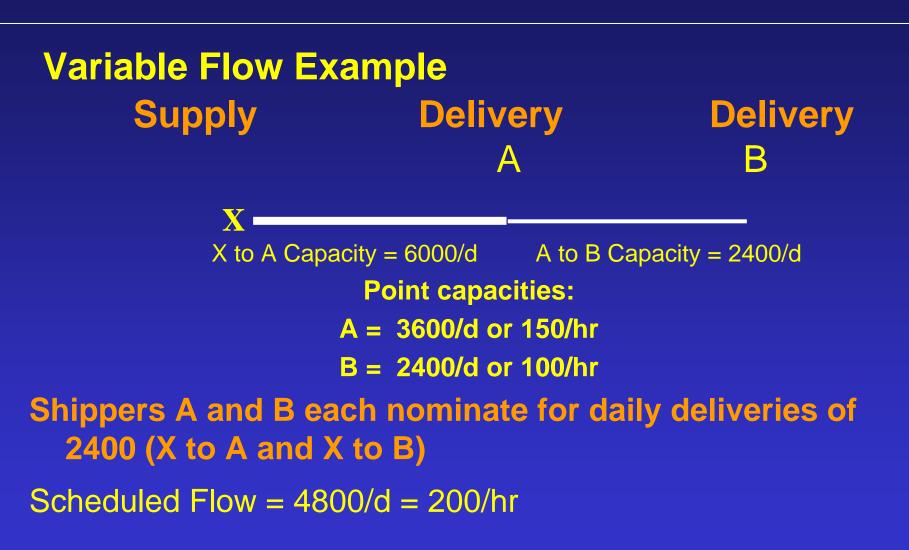
Usable Linepack

- Maximum variation in linepack while...
 - Moving scheduled *daily* quantities
 - Meeting all pressure requirements

Linepack and Intra-day Flexibility

Daily Supply equals Daily Delivery

Linepack and Intra-day Flexibility



Daily Supply equals Daily Delivery

Linepack and Intra-day Flexibility

Daily Supply equals Daily Delivery

EXAMPLE				
Supply	Deli	very	De	livery
	Α	X	B	
X X to A C	Capacity = 6000	A to	B Capacity = 2	400
Nominations:	nations: Shipper A = 2400/d		Shipper B = 2400/d	
Gas supply:	4800/d = 200/h	r		
Hours	Hours Flow R		ate <u>Total Flow</u>	
	A	В	A	B
1 –	6 50	100	300	600
7 –	18 150	50	1800	600
19 —	24 50	100	300	<u>600</u>
	2400	1800		

Scheduling Terminology

- Operator pipeline, producer, LDC, Plant
- Shipper (Contract Holder)
- Receipt and delivery points (contractual/secondary)
- Capacity
 - Mainline (flowing)
 - Point (specific location)
- Capacity allocation (match of nominations to physical)
- Pools (supply aggregation)
- Nomination (request for space to transport gas)
- Confirmation (verification of space downstream and gas supply upstream)
- Scheduled quantity (commitment of volume to transport)
- Imbalance

Origin of Existing Standards

- Gas Day March 1996
- Scheduling Timeline December 1997 (Intra-day)
- Standards were based on
 - Compromise (the "Greater Good")
 - Safety
 - Impact to operators
 - Impact to shippers
 - Impact to markets

NAESB's National Gas Day

 Standard 1.3.1 – Standard time for the gas day should be 9:00 a.m. to 9:00 a.m. (central clock time)

Resulted in coordinated and consistent transactions (nominations), measurement and gas flows across the grid

Gas Day Criteria

- National Standard
 - Single times/periods for all parties
 - Consistent measurement at interconnects
 - Minimize timing-related imbalances
 - Promote operational safety
 - Availability of marketers and financial markets
 - Minimized maintenance impact
- Operational Basis
 - Time when flow changes will occur
 - Time convenient to all time zones
 - Compromise to achieve "best fit."

Scheduling Timeline Origins (Daily / Intra-Day)

- 1995 Original single nomination for the gas day (adopted in March 1996)
 - One intra-day with no specific timeline
- FERC Order 587C directed intra-day nominations (March 1997)
 - GISB Task Force
 - More than 20 meetings in 1997
 - Many compromises
 - Final proposal in December 1997

Scheduling Timeline Criteria

- Conform to Gas Day
- Permit changes when operationally supportable
- Provide for grid-wide coordination
- Prior cycle information known before next cycle
- Minimize imbalances
- Staffing considerations

Scheduling Timeline

Nomination Deadline for Shippers / Poolers	Point Operator Confirmation Deadline	Receipt of Final Scheduled Quantities by Shippers & Point Operators	Effective Start Time for Gas Flow
11:30 a.m. CCT* Timely	3:30 p.m. CCT	4:30 p.m. CCT	9:00 a.m. CCT on the next gas day
6:00 p.m. CCT Evening	9:00 p.m. CCT	10:00 p.m. CCT	9:00 a.m. CCT on the next gas day
10:00 a.m. CCT Intraday 1	1:00 p.m. CCT	2:00 p.m. CCT	5:00 p.m. CCT on the same gas day
5:00 p.m. CCT * Intraday 2	8:00 p.m. CCT	9:00 p.m. CCT	9:00 p.m. CCT on the same gas day

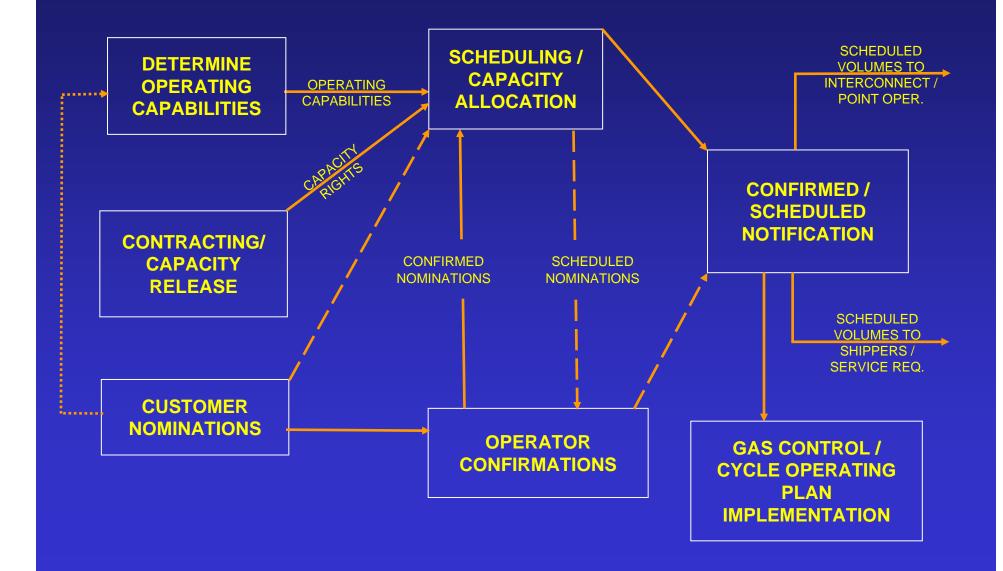
* IT Bumping not allowed during these nomination cycles

Scheduling Timeline Other Issues

• Daily nominations / flow rate responsibility

- Standard 1.3.9 -
 - Nominations in daily quantities
 - Interconnected parties agree on flow rates
- Firm vs IT (Tariff rules)
- Capacity Release/Recalls
- Intra-Day modifications
 - Bumping
 - EPSQ

Gas Flow / Scheduling Summary


Natural Gas is a physical resource

- Gas flow must be planned
- Physical factors impact delivery rates

Pipelines operate under specific rules

- Scheduling timeline
- Firm vs IT
- Capacity release and recalls
- Allocation/balancing
- Reliability is a key issue
 - Communication
 - Repetitive process

Scheduling Process Overview (Four Times Daily)

Determine Operating Capabilities

- Design capabilities
- Availability of facilities
- Temperature / specific gravity changes
- Location / level of inputs/outputs (nominations) for the cycle
- Required system operating adjustments

Scheduling / Capacity Allocation

- Nominations compared to operating capabilities to identify points of constraint
- Capacity allocated to contracts nominated at or through the point of constraint on the basis of tariff rules. Typical rules are:
 - Firm within the path (primary)
 - Firm out of path (secondary)
 - IT / Overrun
- Nominations are allocated capacity at points based on tariff rules. Typical rules are:
 - Primary contract point within the path
 - Secondary contract point within the path
 - Secondary contract point outside the path
 - IT / Overrun

Operator Confirmations

- Confirm with operator using "lesser of rules"
- Confirm pooling transactions are complete and balanced
- Resolve mismatches if possible
- "Cut" volumes which cannot be confirmed indicating with a "reason code" why they could not be confirmed as nominated
- Consider Elapsed Prorata Scheduled Quantity (EPSQ) calculation before confirming nomination reductions during the intraday cycles

Gas Control Cycle Operating Plan Implementation

- Make "set point" changes
- Communicate with field / measurement and interconnect operators
- Monitor operations and make changes to meet operating conditions and / or request nomination changes if flows do not match confirmed nominations

Capacity Scheduling Considerations

Nomination Validations

- Contract rights
- Impact of displacement transactions

Pooling and Title Transfer Tracking

- Additional requirement to match on pipe transactions
- Strictly an administrative function

Intra-day Complexities

- Elapsed Prorata Scheduled Quantity calculations
- Adjustment of nominated flow rates for cycle
- Intra-day releases / recalls

Confirmation Imbalances

- Mismatch between confirmed receipts and deliveries
- Confirmation deadline issue

Nomination Cycle Shippers / Service Requester Considerations

• Nomination cycle considerations

- Capacity availability in cycles other than timely cycle
- No bumping in Intraday two (2) cycle
- Inability to nominate full contract MDQ
- EPSQ limits on nomination reductions during the intraday cycles
- Firmness of upstream supplies
- Coordination of transactions across transportation grid points
- Latency / Transportation Grid ripples
- Availability of key knowledgeable shipper/supplier business personnel. More problematic during "off" hours, evenings, weekends and holidays.

Capacity Scheduling Process Challenges

- Maintain operational integrity of system
 - Safety
 - Ability to meet contractual entitlements
- Interdependence with suppliers, transporters and markets
- Balancing the pipeline (shippers and operators)
- Volume of transactions timeline (meeting deadlines)
- Iterative nature of process (can result in imbalances being created)
- Forward look
 - Customer behaviors
 - Weather
 - Pipeline & electric grid operating conditions (non-ratable flow issues)

Summary

- Pipeline operating dynamics vary from pipeline to pipeline yielding different capabilities to deal with flow variations.
- Current WGQ standards are the result of careful / reasoned compromise among the five WGQ segments.
- Current WGQ standards are very interdependent so that one seemingly small change could have significant impact throughout their entirety.
- Scheduling processes are repetitive and highly interactive with all segments.
- Scheduling/flow reliability influenced by the cycle in which changes are initiated.
- Any change to processes/timelines must be weighed against reliability impacts and need to be cost effective.